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Abstract

We study the welfare implications of self-fulfilling bank runs and liquidity require-

ments, in a neoclassical growth model where banks, facing long-lasting possible runs, can

choose in any period a run-proof asset portfolio. In this framework, runs distort banks’

insurance provision against idiosyncratic liquidity shocks, and liquidity requirements re-

solve this distortion by forcing a credit tightening. Quantitatively, the welfare costs of

self-fulfilling bank runs are equivalent to a constant consumption loss of up to 2.5 percent

of U.S. GDP. Depending on fundamentals, liquidity requirements might generate small

welfare gains, but also increase the welfare costs by up to 1.8 percent.
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1 Introduction

What are the general-equilibrium effects of self-fulfilling bank runs, and of the liquidity re-

quirements needed to offset them? And how large are these effects on welfare? The interest

in these questions comes from the observation that self-fulfilling bank runs are not a phe-

nomenon of the past:1 in fact, they may occur whenever long-term illiquid assets are financed

by short-term liquid liabilities, and the providers of short-term funds all lose confidence in

the borrower’s ability to repay, or are afraid that other lenders are losing their confidence.

There exists a wide consensus that the U.S. financial crisis of 2007-2009 can be interpreted as

a self-fulfilling bank run of financial intermediaries on other financial intermediaries, and that

money market funds and life insurance funds also experienced run-like episodes during the

same period (Gorton and Metrick, 2012; Foley-Fisher et al., 2015), leading to a peak-to-trough

decline in real per capita GDP of 4.8 percent, with a widespread impact on asset markets,

housing markets, government debt and unemployment (Reinhart and Rogoff, 2009, 2014).

These numbers justified a massive government intervention,2 as well as the introduction of

new forms of financial regulation, in particular the liquidity requirements of Basel III, with

the explicit objective of taming the adverse effects of self-fulfilling bank runs in the future.

Yet, these numbers do not allow us to identify the channels through which self-fulfilling bank

runs affect the real economy, and their costs in terms of welfare for the whole society. As a

consequence, it is not even clear whether it is correct to impute the whole observed drop in

GDP to these events, and what the correct government intervention to address them should

be. The present work overcomes these limitations, by studying and quantifying the welfare

implications of self-fulfilling bank runs and liquidity requirements in a neoclassical growth

model with a fully microfounded banking system.

Our model is based on three building blocks, all considered standard workhorses in

their own fields. The first one is the neoclassical growth model: an infinite-horizon, general-

1During the “National Banking Era”, the U.S. economy experienced seven major bank runs, and twenty
non-major ones (Jalil, 2015).

2In 2008-2009, the U.S. Treasury rescued many financial and non-financial corporations via the “Troubled
Asset Relief Program”, with an total investment of around US$400 billion. In the same period, the Federal
Reserve, through its liquidity facilities, extended credit to the U.S. financial system for around US$1.5 trillion.
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equilibrium, dynamic model populated by households and firms. As generally known, this

model lacks a proper role for a banking system, as the households provide resources to the

firms without any intermediation. This leads to our second building block: the theory of

banking of Diamond and Dybvig (1983), where banks provide insurance to their depositors

against idiosyncratic liquidity shocks, that force them to consume in an interim period, i.e.

before the maturity of their investment. This environment is interesting for two reasons. First,

because it rationalizes liquidity and maturity transformation, as a mechanism to decentralize

the efficient provision of insurance against idiosyncratic liquidity shocks. Second, because it

features financial fragility, as a consequence of multiple equilibria: in fact, this economy ex-

hibits one equilibrium in which only those depositors hit by the idiosyncratic liquidity shocks

withdraw in the interim period, and one in which all depositors “run”, in the sense that they

all withdraw in the interim period, because they expect everyone else to do the same, eventu-

ally forcing the banks to go bankrupt. Finally, our third building block is the seminal paper

by Cooper and Ross (1998) (and its refinement by Ennis and Keister (2006)) in which this

multiplicity of equilibria is solved by assuming that the depositors choose to run in accordance

with the realization of an extrinsic “sunspot”, completely uncorrelated to the fundamentals

of the economy.3

More formally, at each point in time the economy is populated by a cohort of one-period-

lived risk-averse agents, who are hit by a private idiosyncratic liquidity shock, that makes

them willing to consume either in an intermediate period, called “night”, or when production

takes place, in the following “morning”. To hedge against these shocks, the agents get access

to an infinitely-lived bank, operating as a social planner, whose objective is to maximize

their expected welfare. To this end, the bank pools the idiosyncratic risk of the depositors:

it collects their deposits, and offers them a standard deposit contract, stating how much

they can withdraw each morning and each night. In turn, the bank finances the contract by

investing every period in liquidity, stored for night withdrawals, and in loans to firms, that

3Our focus is on one specific role – which we believe is key – played by the banking system in the real
economy: the management of liquidity, to hedge against idiosyncratic uncertainty. In this sense, here we do
not consider the banks as monitors of investments or producers of information, as in Diamond (1984) or
Holmstrom and Tirole (1998) Similarly, in modelling financial crises as sunspot-driven bank runs, we do not
take into account crises arising from shocks to the fundamentals of the economy, as in Allen and Gale (1998).
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either get repaid the following morning, or can be liquidated at night with a recovery rate

smaller than 1. In this environment, in the absence of any other friction, the bank chooses

an asset portfolio and deposit contract ensuring perfect intratemporal and intertemporal risk

sharing: the deposit contract equalizes morning and night consumption in every period, and

the asset portfolio satisfies an Euler equation, i.e. the marginal rate of substitution between

consumption in the night of period t and in the morning of period t+1 is equal to the marginal

rate of transformation of the production technology of the firm to which the bank lends.

The peculiar feature of this economy is the presence of financial fragility: in parallel to the

equilibrium described above (that from now on we call “no-run”), the economy also exhibits

a “run” equilibrium. In the run equilibrium all depositors withdraw at night regardless of

the realization of their idiosyncratic shocks, if they all expect the other depositors to do the

same, and they know that the bank does not hold a sufficient amount of liquidity to honor

the contract with all of them. Whenever a run equilibrium and a no-run equilibrium coexist,

the depositors coordinate between them, and choose to run in accordance with the realization

of an extrinsic event, called “sunspot”, happening with some exogenous probability. The

assumption of an exogenous probability is based on some solid empirical evidence (Foley-

Fisher et al., 2015), and allows us to distinguish in an elegant yet parsimonious way among

(i) periods of financial stability when runs are not possible, (ii) periods of financial fragility

when runs are possible because the probability of the realization of the sunspot is positive,

and (iii) periods of crises when they realize.

The bank takes into account the aforementioned equilibrium selection mechanism, and

chooses accordingly the asset portfolio and the deposit contract. One possible alternative is

a “run-proof” contract, in which the bank holds a sufficient amount of liquidity to pay all

night withdrawals, even in the case of a run. To this end, the bank has to satisfy a “run-proof

constraint”: the amount of liquidity in excess of what it would need to pay night consumption,

plus the potential proceeds from loan liquidation, must be sufficient to pay the extra demand

of night consumption at a run, by those depositors who are day consumers but withdraw at

night anyway. The second alternative is instead that the bank offers a contract with possible

runs, according to which it chooses not to completely overcome financial fragility, and let
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runs happen with some positive probability, in which case it pays the depositors pro-rata as

in Allen and Gale (1998).

As there is no closed-form solution for the asset portfolio and deposit contract (and, as a

consequence, for the expected welfare) of the two contracts, we rely on a numerical charac-

terization of the banking equilibrium. To disentangle the short- and long-term mechanisms at

play, we start our analysis by studying an economy with only one period of financial fragility:

the probability of the realization of the sunspot (or, equivalently, the probability of a run)

takes a positive value, and then goes back to zero. In order to analyze the bank choice be-

tween the run-proof contract and the contract with possible runs, we calculate the welfare

costs of both contracts, expressed in terms of units of consumption equivalents, i.e. the con-

stant percentage drop in consumption that would make the no-run equilibrium equivalent to

the two contracts, and let the bank pick the one with the lowest value. The welfare costs of

the run-proof contract turn out to be independent of the probability of a run, and decreasing

in the loan liquidation value, as the higher that is, the slacker the run-proof constraint is, too:

in fact, for a loan liquidation value above 0.17, the run-proof contract provides an allocation

equivalent to the no-run equilibrium, and the welfare costs are zero. In contrast, the welfare

costs of the contract with possible runs are ceteris paribus decreasing in the loan liquidation

value, but increasing in the probability of a run. For low values of the loan liquidation value,

the welfare costs of the contract with possible runs are lower than those of the run-proof

contract, hence the bank chooses to be not run proof. However, the welfare costs of the run-

proof contract decrease faster than those of the contract with possible runs. Hence, there

exists a unique threshold at which the bank switch to the run-proof contract. Interestingly,

as the probability of a run increases and the welfare costs of the run-proof contract remain

unchanged, while the welfare costs of the contract with possible runs increase, the threshold at

which the bank switches from a contract with possible runs to a run-proof contract decreases,

up to the point at which the probability of a run is so high that the bank chooses to be run

proof irrespective of it. In other words, the bank independently choose to be run proof only

when both the loan liquidation value and the probability of a run are sufficiently high: in

our calculation, above 0.11 and 0.014, respectively. The resulting welfare costs of the banking
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equilibrium with runs, compared to the no-run equilibrium, are the highest whenever the loan

liquidation value is the lowest, and the probability of a run is so high that the bank chooses

the run-proof contract. This combination brings about welfare costs of 0.23 percentage points

in units of consumption equivalents, equal to a constant consumption loss of 0.16 percent of

U.S. GDP, at 2014 levels.

We conclude the analysis by characterizing the equilibrium of an economy where financial

fragility might be long lasting. To this end, we assume that the economy starts with a positive

probability of a run, and that this probability goes to zero in the following period only with

some positive probability. Accordingly, the bank solves a “hybrid” dynamic discrete-choice

problem, as it chooses in every period some continuous variables (i.e. the asset portfolio and

the deposit contract) and one discrete variable, i.e. whether to be run proof. To solve this

model, we adapt the procedure developed by Chatterjee and Eyigungor (2012), and introduce

a publicly-observable i.i.d. shock to the utility of the depositors in the case of a run, that can

be interpreted as a taste shock or an institutional shock during periods of financial fragility. In

such a framework, we find long-lasting effects of self-fulfilling bank runs on credit provision and

GDP, leading to welfare costs of up to around 3.6 percentage points in units of consumption

equivalents, equal to a constant drop in consumption of 2.5 percent of U.S. GDP.

Finally, we use the previous results to evaluate the welfare costs of a regulatory intervention

that makes the banking system completely run proof, via two different liquidity requirements:

one that forces the bank to be run proof, i.e. so that the liquidation value of its whole asset

portfolio is sufficient to pay all depositors in the case of a run, and one that forces it to

be “narrow”, i.e. so that it is able to serve all depositors with liquidity, and avoid loan

liquidation. Our results show that, for intermediate values of the probability of a run and low

loan liquidation value, the bank chooses the contract with possible runs in very few periods

of financial fragility. Yet, the possible realization of runs in some of them leaves space for

some small welfare gains from regulation: in fact, imposing a run-proof liquidity requirement

can lead to a drop in welfare costs, with respect to the unregulated equilibrium, of up to

0.22 percentage points in units of consumption equivalents, equal to a constant consumption

gain of 0.15 percent of U.S. GDP; similarly, imposing a narrow-banking liquidity requirement
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can lead to a drop in welfare costs of up to 0.10 percentage points in units of consumption

equivalents, equal to a constant consumption gain of 0.07 percent of U.S. GDP.

Yet, some high welfare costs can also arise from financial regulation. From what said above,

it is clear that the imposition of a run-proof liquidity requirement brings about an increase in

welfare costs, with respect to the unregulated equilibrium, whenever the probability of a run

and the loan liquidation value are both so low that the bank would rather choose a contract

with possible runs, but is instead forced to be run proof. Quantitatively, this translates into an

increase in welfare costs of up to 0.16 percentage points in units of consumption equivalents

(equal to a constant consumption loss of 0.11 percent of U.S. GDP) in the model with only

one period of financial fragility, and of up to 2.5 percentage points in units of consumption

equivalents (equal to a constant consumption loss of 1.8 percent of U.S. GDP) in the model

with long-lasting financial fragility. Conversely, the imposition of the narrow-banking liquidity

requirement brings about an increase in welfare costs also whenever the loan liquidation value

is so high that the bank would be able to sustain the no-run equilibrium, and is instead

forced to hold excess liquidity. This translates into an increase in welfare costs of up to 0.19

percentage points in units of consumption equivalents (equal to a constant consumption loss

of 0.13 percent of U.S. GDP) in the model with only one period of financial fragility, and of up

to 3.5 percentage points (equal to a constant consumption loss of 2.4 percent of U.S. GDP) in

the model with long-lasting financial fragility. The marked difference between one-period and

long-lasting financial fragility leads us to the conclusion that the highest costs of self-fulfilling

bank runs and liquidity requirements originate neither from their immediate impact on the

real economy nor from their recovery, but from their persistence.

The present paper contributes to the analysis of the general-equilibrium effects of financial

shocks and financial regulation (Van den Heuvel, 2008; Gertler and Kiyotaki, 2015; Mendicino

et al., 2017) by offering a fully microfounded assessment of the distortions induced by self-

fulfilling bank runs and liquidity requirements. The most recent reference in this literature, by

Segura and Suarez (2017), differs from our work in at least two important respects. First, they

study the welfare costs of excessive maturity transformation and the welfare gains of regulating

debt maturity, by focusing on the banks’ liability composition, while here we study the effect
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of maturity transformation on banks’ asset structure, and the welfare effects of liquidity

requirements. Second, in their framework banks faces exogenous crisis states, that represent

systemic liquidity crises in a reduced form, while we endogenize the emergence of financial

fragility, as a consequence of depositors’ self-fulfilling expectations and banks’ ability to react

to them. As far as this last point is concerned, the present paper develops a dynamic general-

equilibrium theory that makes reference to the literature on dynamic banking (Bencivenga

and Smith, 1991; Qi, 1994; Allen and Gale, 1997; Ennis and Keister, 2003) but with a focus

on the welfare distortions of self-fulfilling runs, rather than on growth and intertemporal risk

sharing. Finally, from a methodological point of view, our work is related to the most recent

literature on the general-equilibrium effects of multiple equilibria (Bocola and Dovis, 2016;

Robatto, 2017) and to the application of dynamic discrete-choice models to the quantitative

analysis of sovereign default (Chatterjee and Eyigungor, 2012; Muller et al., 2016): in that

sense, our work is the first one – to the best of our knowledge – to apply those techniques to

models of self-fulfilling bank runs.

2 A Dynamic Model of Banking

Time is infinite and discrete, and every period is divided into two sub-periods, that we label

1 and 2, and call “day” and “night”. At every point in time, the economy is populated by

a cohort made of a unitary continuum of one-period-lived agents. All agents in the economy

are affected by some idiosyncratic uncertainty, that hits them in the form of a preference

shock. Being ex-ante equal, every agent draws a type θt ∈ {0, 1}, where 0 < π < 1 is the

probability of being of type 1, and 1− π is the probability of being of type 0. The preference

shocks are private information, and are independent and identically distributed across the

agents. Therefore, by the law of large numbers, the cross-sectional distribution of the types

is equivalent to their probability distribution: π is the fraction of agents who turn out to

be of type 1, and 1 − π is the fraction of agents who turn out to be of type 0. The role of

the idiosyncratic shocks is to affect the sub-period when the agents enjoy consumption. This
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happens according to the utility function:

U(c2t, c1t+1, θt) = θtu(c2t) + β(1 − θt)u(c1t+1), (1)

where the parameter β is lower than 1, and represents a discount factor. This functional

form states that, depending on the realization of the idiosyncratic shock, each agent either

consumes during the night of the same period (when θt = 1) or in the day of the following

one (when θt = 0): in that respect, we talk about “night consumers” and “day consumers”,

respectively. The felicity function u(c) is increasing, strictly concave, and satisfies the Inada

conditions. Moreover, the degree of relative risk aversion is strictly larger than 1.

In order to hedge against the idiosyncratic shocks, the agents have two real technologies.

The first is a storage technology, that we call “liquidity”, yielding one unit of consumption

in every sub-period for each unit invested in the previous one. The second technology is

a neoclassical production function Yt = F (Kt), employed by a large number of competitive

firms. We assume that the only input of the production technology is capital, and that capital

needs “time to build”: the amount invested at time t matures in the morning of t+1, yields a

return equal to its marginal productivity, and then depreciates at rate d. In what follows, to

save on notation, we assume without loss of generality that d = 1, and relax this hypothesis

in the numerical analysis.

To invest in the two real technologies, the agents get access to a infinitely-lived bank,

that operates as a social planner and maximizes the weighted sum of the expected welfare

of all cohorts, where the weight of a cohort born at time t is βt.4 Moreover, the agents are

“isolated”, in the sense that they do not interact one with each other, once they enter in a

banking relationship.5 The bank collects the deposits, and performs two tasks: (i) it invests

in liquidity on behalf of the depositors; (ii) it provides capital to the firms, in the form of

loans. Loans can be liquidated at night (i.e., before being invested), using a “liquidation

4Incidentally, there is no generally accepted criterion for the aggregation of different cohorts. Yet, we
employ decreasing weights so that the objective function of the planner is bounded and the problem becomes
mathematically tractable. See Qi (1994) for a discussion of the hypothesis of an infinitely-lived bank.

5In a static environment, Jacklin (1987) shows that, if we relax this hypothesis, the banking equilibrium
would be run proof, and would not provide more welfare than autarky.
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technology” allowing the bank to recover r < 1 units of consumption for each unit liquidated.

More formally, the bank solves the following problem:

max
{c2t,c1t+1,ℓt,kt+1,zt,Dt}

∞
∑

t=0

βt
[

πu(c2t) + β(1− π)u(c1t+1)
]

, (2)

subject to the budget constraints:

(1− π)c1t + ℓt + kt+1 ≤ F (kt −Dt−1) + zt−1, (3)

πc2t + zt ≤ ℓt + rDt, (4)

kt+1 ≥ Dt, (5)

to the incentive-compatibility constraint c2t ≤ c1t+1, and to the non-negativity constraints

zt ≥ 0 and Dt ≥ 0, which must all hold at any point in time.6 The bank maximizes the

expected welfare of the depositors, by choosing an incentive-compatible deposit contract

{c2t, c1t+1}, an asset portfolio of liquidity ℓt and loans kt+1, the amount of excess liquidity

zt to roll over to the following period, and the amount of loans to liquidate Dt. The budget

constraint in (3) states that the bank employs the production from the unliquidated loans

kt − Dt, provided to the production sector in the previous period, and the excess liquidity

zt−1 rolled over from the previous period, to pay the day consumption c1t (chosen in period

t−1) of the (1−π) day consumers, and the financial investment in liquidity and loans. Then,

the bank uses liquidity ℓt, plus the return from the loan liquidation rDt, to pay the night

consumption c2t to the π night consumers, and for excess liquidity zt. To clearly point out the

difference between the loans allocated at date t and the actual unliquidated loans (which is

going to be important when we introduce bank runs), we explicitly impose, in equation (5),

that the amount of loans Dt that the bank can liquidate cannot be larger than the actual total

loans kt+1. Finally, since the realization of the idiosyncratic types is private information, by

the Revelation Principle the bank needs to impose an incentive-compatibility constraint: day

consumption must be at least as large as night consumption, in order to induce truth-telling.

In fact, if that was not the case, a day consumer would pretend to be a night consumer,

6Because of the Inada conditions, in equilibrium all other variables will be strictly positive.
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withdraw from her bank account, and store until the following morning. The definition of the

banking equilibrium is as follows:

Definition 1. Given an initial amount of capital K0, liquidity z−1, liquidation D−1 and day

consumption c10, a no-run banking equilibrium is a bank portfolio strategy {ℓt, kt+1, zt,Dt}

and a deposit contract {c2t, c1t+1} for every t = 0, 1, . . . such that, for given prices:

• The deposit contract and the bank portfolio strategy solve the banking problem in (2);

• The production inputs maximize firm profits;

• Resources are exhausted.

We conclude the description of the environment by summarizing the timing of the events.

In every period t: (i) during the morning, production takes place, and the firms produce F (kt);

(ii) at noon, the bank pays the day consumption c1t, and decides the terms of the portfolio

strategy {ℓt, kt+1, zt,Dt} and the banking contract {c2t, c1t+1}; (iii) at night, the idiosyncratic

shocks are revealed, and night consumption c2t takes place according to the contract.

2.1 Discussion of the Assumptions

Several assumptions regarding this environment are worth commenting before the character-

ization of the equilibrium. The assumption of different life spans between the bank and its

depositors is similar to He and Krishnamurthy (2013), and reflects the trade-off between the

depositors’ short-term incentives to withdraw and the long-term effects of these incentives on

credit provision and capital accumulation. Moreover, assuming that the bank operates as a

social planner is consistent with the characteristics of a competitive banking system with free

entry, where the only banks who operate are those which maximize the expected welfare of

their depositors.

The assumption of a loan liquidation value smaller than 1 was first introduced by Cooper

and Ross (1998), and is based on some extensive empirical evidence (Altman et al., 2004).

As an alternative to an exogenous loan liquidation value, we could introduce a secondary

market for bank loans, as in Gertler and Kiyotaki (2015) and Segura and Suarez (2017).

However, under this new assumption, we would obtain a different characterization of the

11



banking equilibrium only if the loan liquidation value turned out to be larger than or equal

to 1, in which case no run equilibrium would exist.

Three further features of the environment are worth highlighting. First, the economy is

fully intermediated, in the sense that the bank channels all household savings into the produc-

tion sector: in this way, we account for the large extent reached by financial intermediation in

the world economy in the last decades (Beck et al., 2010). Second, we assume that the bank

cannot suspend deposit convertibility, which would rule out runs, so that we can focus on the

role of regulation in achieving the same goal. Third, there exists no deposit insurance. This

assumption reflects the aggregate nature of the shock that we want to analyze, and finds its

justification in the growing role played in modern financial systems by uninsured bank de-

posits and the shadow banking system, that offers bank services – and in particular liquidity

and maturity transformation – without bank regulation or government assistance.7

2.2 The No-Run Banking Equilibrium

We start our analysis with the characterization of the no-run equilibrium, where bank runs

are ruled out by assumption, which is the benchmark against which we compare the banking

equilibrium with runs of the following section.8 It is easy to show that the budget constraints

all hold with equality, hence we can substitute (4) into (3) and get:

(1− π)c1t + πc2t + zt − rDt + kt+1 = F (kt −Dt−1) + zt−1. (6)

We attach the multipliers βtλt to (6), βtξkt to (5), βtξzt to the non-negativity constraint zt ≥ 0,

and βtξDt to the non-negativity constraint Dt ≥ 0, respectively. The first-order conditions of

7In fact, uninsured deposits of FDIC-insured commercial banks and savings institutions grew from around
40 percent of total liabilities in the early Nineties to around 60 percent in 2016; in the same period, according
to Bao et al. (2015), also “runnable liabilities” in the U.S. shadow banking system grew from around 40 to
60 percent of GDP. Source: own calculations based on FDIC bank balance-sheet data, and Bao et al. (2015).
Runnable liabilities are the sum of uninsured deposits, money market mutual funds, repos, commercial papers,
securities lending, federal funds borrowed, variable-rate demand obligations, and funding agreement backed
securities.

8One way to rationalize the use of the no-run equilibrium as benchmark is to think that a central bank,
in full control of the money supply, can create liquidity at (almost) zero costs, and therefore avoid bank runs
altogether.
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the program read:

c2t : u′(c2t) = λt, (7)

c1t+1 : u′(c1t+1) = λt+1, (8)

kt+1 : λt = βF ′(kt+1 −Dt)λt+1 + ξkt , (9)

zt : λt = βλt+1 + ξzt , (10)

Dt : rλt + ξDt = βF ′(kt+1 −Dt)λt+1 + ξkt . (11)

In equilibrium, the marginal benefit from increasing the current night consumption c2t and

the future day consumption c1t+1 must be equal to their shadow values, i.e. the amount λt

and λt+1 by which such increases tighten the budget constraint in t and t+ 1. Since, at each

point in time, the shadow values are the same for both day and night consumption, the bank

provides perfect intratemporal risk sharing: the agents who find themselves in the condition

of consuming at night receive the exact amount of consumption goods that they would have

consumed during the morning of the same day, or c2t = c1t for every t. Furthermore, the

bank chooses the amount of loans in portfolio so as to equalize its marginal costs, in terms

of a tighter budget constraint at time t, to its marginal benefits, in terms of a slacker budget

constraint in t+1. Thus, in equilibrium, it allocates its portfolio between liquidity and loans in

accordance with an Euler equation, so that the marginal rate of substitution between current

night consumption and future day consumption (which is a measure of intertemporal risk

sharing) is equal to the marginal rate of transformation of the production technology:

u′(c2t) = βF ′(kt+1 −Dt)u
′(c1t+1). (12)

As the felicity function u(c) is strictly concave, the contract satisfying the Euler equation

is incentive-compatible if βF ′(kt+1 −Dt) ≥ 1. Moreover, as the discount factor β is smaller

than 1, this also means that the marginal productivity of capital has to be strictly larger

than 1: capital is a technology that provides a higher yield than liquidity, and is the only

one that is employed to transfer resources from one period to the following. In other words,
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providing loans to the production sector always dominates the roll-over of excess liquidity

and, in equilibrium, we have that zt = 0 for every t. Yet, liquidity is the only technology

employed to finance night consumption: in fact, from the first-order conditions with respect

to kt+1 and Dt, it is easy to see that ξDt = (1−r)λt, which is strictly positive and implies that

Dt = 0 by complementary slackness. We summarize our findings in the following proposition:

Proposition 1. Assume that βF ′(kt+1) > 1 for every t. The no-run banking equilibrium is

characterized by:

u′(c2t) = u′(c1t), (13)

u′(c2t) = βF ′(kt+1)u
′(c1t+1). (14)

In equilibrium, the bank does not roll over any excess liquidity and does not liquidate loans,

i.e. zt = Dt = 0 for every t = 0, 1, . . . .

The equilibrium allocation characterized in this proposition is observationally equivalent

to that of a standard neoclassical growth model. This result highlights the fact that adding a

microfounded banking system to a general equilibrium model is a meaningful exercise, that

provides more insights than a standard growth model without a banking system, only to the

extent that we introduce some financial distortion in the system, too. That is the topic of the

incoming sections.

3 Self-Fulfilling Bank Runs

The assumption that the realizations of the idiosyncratic shocks are private information pro-

vides a rationale for the existence, in this environment, of a run equilibrium, where all agents

withdraw c2t at night, regardless of the actual realization of their idiosyncratic types. The

run happens whenever all agents expect that every other agent is going to run, and know

that the bank is not able to fulfill its contractual obligations with all of them. Crucially,

we assume that the bank “anticipates” the run, in the sense that it modifies its investment

strategy ex ante to accommodate for the possibility that the run equilibrium arises ex post.

As a consequence, bank runs will affect the deposit contract, and the bank asset portfolio of
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liquidity and loans.

More formally, assume that, in the case of a run, the bank serves all the agents withdrawing

at night according to an “equal service constraint”, i.e. such that they get an equal share of

the liquidation value of the whole bank portfolio. Then, the budget constraint at a run reads:

zt+1 + πc2t + rDt = cR2t. (15)

This expression shows that the bank uses the available liquidity ℓt (the sum of what is set

aside for night consumption πc2t and the excess liquidity zt+1) and the return from loan

liquidation (which allows the bank to recover rDt units of consumption for each Dt units

of loans liquidated) to pay an amount of night consumption cR2t to all agents. Then, a run

equilibrium exists if and only if the agents know that the bank does not hold a sufficient

amount of liquid resources to pay the night consumption in the case of a run, or c2t > cR2t =

zt+1 + πc2t + rDt.

Whenever the banking problem exhibits a run equilibrium and a no-run equilibrium simul-

taneously, the depositors coordinate over which one to select in accordance with the realization

of an extrinsic event st, called “sunspot”. The sunspot takes the values 1 with probability qt,

in which case the agents choose to run, and 0 with probability (1 − qt), in which case they

choose not to run.9 The bank, in turns, knows the equilibrium-selection mechanism of the

depositors, and adjusts ex ante the asset portfolio and banking contract, so as to maximize

expected welfare. In doing so, the bank also indirectly affects the amount of consumption cR2t

that the agents receive, in the case of a run. Thus, it can effectively choose whether a run

equilibrium exists or not or, in other words, whether to be “run proof”.

Before going into the details of the banking problem with runs, it is useful to recap the

timing of actions. In every period t: (i) during the morning, production takes place, and the

firms produce F (kt−Dt−1); (ii) at noon, the bank pays the day consumption c1t, and decides

the terms of the portfolio strategy {ℓt, kt+1, zt,Dt}, and the banking contract {c2t, c
R
2t, c1t+1};

(iii) at night, the idiosyncratic shocks are privately revealed, the agents decide whether to

9Accordingly, in what follows, we interchangeably refer to qt as the probability of a run, or of the realization
of the sunspot, or that the depositors coordinate over run.
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run or not depending on the realization of the sunspot, and the night consumption c2t takes

place according to the contract.

To formally describe the banking problem with runs, first define the dummy variable It,

that takes the values 0 if the bank chooses to be run proof, i.e. if c2t ≤ cR2t, and 1 if it chooses

a contract with possible runs. Moreover, define:

at ≡ F (kt − st−1It−1Dt−1) + (1− st−1It−1)
[

zt−1 − (1− π)c1t
]

. (16)

This variable, together with st−1 (i.e. the realization of the sunspot in the previous period),

represents the state of the economy at date t, and summarizes the total available resources

for investment. It depends on the asset portfolio and banking contract of the previous period,

and on whether there has been a run or not: if in t−1 a run equilibrium was at the same time

possible (i.e. It−1 = 1) and selected (i.e. st−1 = 1), the bank would have kt − Dt resources

invested; moreover, the bank would consume the excess liquidity zt−1 rolled over from the

previous period during the run, but would not pay day consumption c1t to the (1 − π) late

consumers who ran.

Then, making use of the definition of liquidity, ℓt = zt+1 + πc2t, and of cR2t from (15), the

banking problem can be written recursively as:

V (at, st−1) = max
{c2t,c1t+1,

kt+1,zt,Dt}

[

(1 − qtIt)
(

πu(c2t) + β(1− π)u(c1t+1)
)

+ qtIt
[

π + β(1− π)
]

u(cR2t)
]

+

+ βEst[V (at+1, st)], (17)

subject to the budget constraints:

πc2t + kt+1 + zt ≤ at, (18)

kt+1 ≥ Dt, (19)

and to the non-negativity constraints Dt ≥ 0, kt+1 ≥ 0 and zt ≥ 0. If the bank chooses the

run-proof contract, its objective function turns into the one of the no-run banking problem. If
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instead it chooses the contract with possible runs, with probability (1− qt) the agents select

the no-run equilibrium, and their expected welfare can be written as before; with probability

qt, instead, the agents select the run-equilibrium and all get cR2t: at a run, π agents are night

consumers, and consume right away, and (1 − π) agents are day consumers, who store and

consume in the morning of the following period. The definition of the equilibrium is as follows:

Definition 2. Given a sequence of sunspots {st}, and an initial amount of capital K0, liquidity

z−1, liquidation D−1 and day consumption c10, a banking equilibrium with runs is a bank

portfolio strategy {ℓt, kt+1, zt, Dt}, a deposit contract {c2t, c1t+1}, and a vector of bank’s

decisions over whether to be run proof or not {It} for every t = 0, 1, . . . such that:

• The deposit contract, the bank portfolio strategy and the vector of bank’s decisions over

whether to be run proof or not solve the banking problem in (17);

• The production inputs maximize firm profits;

• Resources are exhausted.

In what follows, we study the equilibrium of an economy where the probability of the

sunspot qt can either be zero or a constant positive number q. We first characterize the run-

proof contract and the contract with possible runs at time t separately, then analyze the

optimal choice of the bank between the two.

3.1 The Run-Proof Contract

When offering a run-proof contract, the bank chooses to hold a sufficient amount of liquidity

to pay all depositors in the case of a run, so that c2t ≤ cR2t. This condition is equivalent to

imposing the run-proof constraint:

zt + rDt ≥ (1− π)c2t, (20)

which is a more stringent liquidity requirement than the one of the no-run equilibrium. In-

tuitively, this is the reason why, to make the contract run proof, the bank is forced to hold

more liquidity than the amount necessary to pay night consumption. More formally, the bank
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solves the no-run banking problem in (2), subject to the liquidity requirement (20), the bud-

get constraints and the non-negativity constraints on Dt, kt+1 and zt. Notice that, despite the

fact that the contract does not exhibit runs, the bank must solve for the amount Dt of loans

to liquidate, in order to effectively rule them out. Attach the Lagrange multipliers βtλt(st−1)

to the budget constraint, {βtξDt , βtξkt , β
tξzt } to the non-negativity constraints, and βtχt to the

run-proof constraint (20).10 The first-order conditions of the program read:

c2t : πu′(c2t) = πλt(st−1) + (1− π)χt, (21)

c1t+1 : (1− π)u′(c1t+1) = V ′
c (at+1, 0), (22)

kt+1 : λt(st−1) = βVk(at+1, 0) + ξkt , (23)

zt : χt + βVz(at+1, 0) + ξzt = λt(st−1), (24)

Dt : rχt + ξDt = ξkt , (25)

where V ′(at+1, 0) is the derivative of future utility with respect to the control variables con-

ditional on st being equal to zero, as the contract is run proof in period t. To characterize

the contract, we start by guessing that the run-proof constraint is slack. By complementary

slackness, this means that χt is equal to zero. Clearly, by (25), this implies that ξkt = ξDt .

Moreover, from (23) and (24), we obtain:

β(F ′(kt+1)− 1)u′(c1t+1) = ξzt − ξDt , (26)

where we use the fact that V ′
c (at+1, 0) = λt+1(0) and V ′

k(at+1, 0) = F ′(kt+1)λt+1(0) by the

envelope condition. By the fact that F ′(kt+1)−1 is positive, we get that ξzt > ξDt . Notice that

it must be the case that Dt > 0, as it is a cheap way to ensure that the run-proof constraint

is satisfied, without further tightening the budget constraint (as the run is off-equilibrium).

Therefore, ξDt must be equal to zero by complementary slackness, and ξzt must be strictly

10To save on notation, we do not explicitly write that all multipliers depend on the states of the problem,
except for the one on the budget constraint, which is crucial to track.
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positive, implying that zt = 0. Finally, (21) and (23) give:

c2t = c1t, (27)

u′(c2t) = βF ′(kt+1)u
′(c1t+1), (28)

Put differently, whenever the run-proof constraint is slack, the run-proof contract is equivalent

to the no-run contract. However, notice that this holds only if the loan liquidation value r is

sufficiently large so that rDt > (1 − π)c2t holds. Otherwise, zt + rDt = (1 − π)c2t and the

run-proof contract is distorted with respect to the no-run equilibrium. To see that, notice

that, as the Lagrange multiplier χt is strictly positive, by (25) it must be the case that ξkt is

also strictly positive in order to have ξDt ≥ 0. This further implies that the Euler equation is

distorted towards the marginal utility of night consumption, or u′(c2t) > βF ′(kt+1)u
′(c1t+1).

Moreover, from (21), it must also be the case that c2t < c1t, by the strict concavity of the

felicity function. In other words, in order to be run proof, the bank is forced to tighten credit,

and rebalance its asset portfolio towards liquidity, while at the same time lowering the amount

of night consumption offered: making the contract run proof comes at the cost of both less

intratemporal and intertemporal risk sharing.

Proposition 2. The run-proof contract is characterized by the following system of equations:

πu′(c1t) + (1− π)χt = πu′(c2t), (29)

u′(c1t) = βF ′(kt+1)u
′(c1t+1) + ξkt , (30)

u′(c1t) = βu′(c1t+1) + ξzt + χt, (31)

ξkt = rχt + ξDt . (32)

If the loan liquidation value r is sufficiently large, the run-proof contract is equivalent to the

no-run equilibrium.
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3.2 The Contract with Possible Runs

When choosing a contract with possible runs, the bank takes into account that, depending on

the realization of the sunspot, the depositors might all choose to withdraw at night, in which

case it offers them an amount of consumption equal to cR2t = πc2t + zt + rDt. More formally,

using the aforementioned definition of cR2t, the banking problem reads:

V (at, st−1) = max
{c2t,c1t+1,

kt+1,zt,Dt}

[

(1− q)
(

πu(c2t) + β(1− π)u(c1t+1)
)

+ q
[

π + β(1 − π)
]

u(cR2t)
]

+

+ βEst [V (at+1, st)], (33)

subject to the budget constraints and to the non-negativity constraints. We attach to the

constraints the Lagrange multipliers βtλt(st−1), β
tξkt , β

tξDt and βtξzt respectively, and derive

the first-order conditions:

c2t : (1− q)u′(c2t) + q[π + β(1− π)]u′(cR2t) = λt(st−1), (34)

c1t+1 : β(1 − π)(1 − q)u′(c1t+1) + βEst[V
′
c (at+1, st)] = 0, (35)

kt+1 : βEst [V
′
k(at+1, st)] + ξkt = λt(st−1), (36)

zt : q[π + β(1− π)]u′(cR2t) + βEst[V
′
z (at+1, st)] + ξzt = λt(st−1), (37)

Dt : rq[π + β(1− π)]u′(cR2t) + βEst [V
′
D(at+1, st)] + ξDt = ξkt . (38)

Making use of the Lagrange multiplier λt(st−1) = u′(c1t) and the envelope conditions:

V ′
c (at, st−1) = −(1− st−1)(1− π)λt(st−1), (39)

V ′
k(at, st−1) = F ′(kt − st−1Dt−1)λt(st−1), (40)

V ′
z(at, st−1) = (1− st−1)λt(st−1), (41)

V ′
D(at, st−1) = −st−1F

′(kt − st−1Dt−1)λt(st−1), (42)
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we first derive the equilibrium condition:

(1− q)u′(c2t) + q
[

π + β(1− π)
]

u′(cR2t) = u′(c1t), (43)

that characterizes the relationship between the night consumption c2t and the current day

consumption c1t. The left-hand side of this expression is a linear combination of two positive

terms, with u′(c2t) < u′(cR2t) by the strict concavity of the felicity function and the fact that

c2t > cR2t in the contract with possible runs. Hence, we can characterize the following relation:

Lemma 1. If β is sufficiently close to 1, the contract with possible runs exhibits c2t > c1t.

In other words, if the depositors do not discount the future too much, the bank reacts to a

positive probability of a run by offering a contract with possible runs with more intratemporal

risk sharing than the one offered in the no-run equilibrium. The rationale for this result lies in

the fact that, with equal service, there are two advantages of night consumption: (i) it provides

higher welfare to night consumers, when all depositors coordinate over no-run, and (ii) it

increases liquidity, that goes to all depositors, when instead they coordinate over run. This

means that, for a given day consumption c1t, the marginal utility of night consumption has to

go down, with respect to what happens in the no-run equilibrium. Hence, night consumption

has to increase.

To derive the intertemporal condition, we instead make use of the expressions in (35), (36)

and (38), together with the corresponding envelope conditions, and get:

u′(c1t) = (1− q)βF ′(kt+1)u
′(c1t+1) + rq[π + β(1− π)]u′(cR2t) + ξDt . (44)

This is a distorted Euler equation, that equalizes the marginal costs of offering one more

unit of loans, in terms of tightening the current budget constraint, to its marginal benefits,

in terms of relaxation of the future budget constraint. If the depositors coordinate over no-

run (with probability (1 − q)) more loans make future consumption higher, as in the no-run

equilibrium. If they instead coordinate over run (with probability q) the marginal benefit of

offering one more unit of loans, in terms of relaxing the future budget constraint and holding
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more resources that can be liquidated (i.e. relaxing the constraint kt+1 ≥ Dt) must be equal to

the marginal cost of liquidating that one unit which, in turns, must be equal to the marginal

benefits of liquidation. This is made further clear by the equilibrium condition for the optimal

choice of Dt:

βqF ′(kt+1 −Dt)λt+1(1) + ξkt = rq[π + β(1− π)]u′(cR2t) + ξDt , (45)

where the marginal costs of liquidation, in terms of tightening the future budget constraint

(the left-hand side of (45)), is equal to its marginal benefits (the right-hand side of (45)), in

terms of extra consumption that the depositors can enjoy, if they coordinate over run. Finally,

from the first-order condition with respect to excess liquidity zt, we derive the equilibrium

condition:

u′(c1t) = q
[

π + β(1 − π)
]

u′(cR2t) + β(1− q)u′(c1t+1) + ξzt , (46)

where the marginal costs of holding excess liquidity, in terms of tightening the current budget

constraint (the left-hand side of (46)), is equal to its marginal benefits (the right-hand side

of (46)), in terms of the extra consumption that the depositors can enjoy, if they coordinate

over run, and further relaxation of the budget constraint, if they coordinate over no-run.

4 Numerical Analysis

The last step missing in the characterization of the banking equilibrium with runs is the

bank choice between the run-proof contract and the contract with possible runs. In order

to compare them, we need to calculate the expected welfare of the depositors in both cases,

which is impossible in closed-form solution. Hence, we rely on a numerical analysis of the

equilibrium. To this end, we first calibrate the parameters of the model to the U.S. economy,

and then run two separate experiments: first, we study how the model behaves in the presence

of short-term financial fragility, i.e. when the probability of a run q is positive in only one

period; then, we extend the analysis to the case of multi-period financial fragility, i.e. when q

is positive in a series of consecutive periods before going back to zero. In both experiments,

we evaluate the evolution of the economy on impact, as well as on its trajectory back to the
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steady state.

4.1 Parameter Calibration

We choose a standard Cobb-Douglas production function Yt = Kα
t , with α = 0.45.11 As

mentioned before, we relax the hypothesis of full depreciation of capital from one period to

the following, and find the depreciation rate d from the investment equation in steady state,

i.e.:

1 = 1− d+
It
Kt

. (47)

With the investment-to-capital ratio It/Kt approximately equal to 0.076, as it is common in

the literature, we get d = 0.076.

As far as the felicity function is concerned, we use a CRRA formulation. From the Euler

equation of the no-run banking equilibrium in (12), we calibrate the value of the discount

factor β:

1 = β(F ′
K + 1− δ) = β

(

α
Y

K
+ 1− d

)

. (48)

With the output-to-capital ratio Y/K approximately equal to 0.30, and with d = 0.076, we

obtain that β is approximately equal to 0.94.

The last parameter left to calibrate is the probability π of the realization of the idiosyn-

cratic shock θt, that makes the agents willing to consume at night. To this end, we take the

equilibrium budget constraint of the no-run banking problem in (4), and divide both sides by

GDP Yt to get:

ℓt
Yt

=
πc2t
Yt

=
πc1t
Yt

= π
c1t
Kt

Kt

Yt

, (49)

where we use the fact that, in the no-run banking equilibrium, c2t = c1t. From the resource

constraint, we know that it must be the case that c1t = Yt− It. Hence, dividing both sides by

Kt and plugging the result into (49), we obtain:

π =
ℓt
Yt

Yt

Kt

Yt

Kt

− It
Kt

. (50)

11In all exercises, the assumption that βF ′(kt+1) > 1 is satisfied.
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We set the ratio of liquid assets to GDP to 0.0146, equal to the average value for the U.S.

financial businesses in the period 1990-2010, that we derive from the U.S. financial accounts.12

From here, π comes out to be approximately equal to 0.02, which is close to the value in Gertler

and Kiyotaki (2015) (π = 0.03).

Finally, as far as the realization of the sunspot q and the loan liquidation value r are

concerned, we compare different solutions for q in the interval [0, 0.06] and r in the interval

[0, 0.25]. Our choice for the upper bound of the loan recovery rate is inconsequential for

the characterization of the banking equilibrium, and is mostly consistent with the observed

recovery rates of financial institutions hit by self-fulfilling runs during the 2007-2009 U.S.

financial crisis.13

4.2 One-Period Runs

In order to understand the underlying mechanisms regulating the banking equilibrium, we

start our analysis with the characterization of the two contracts, when the probability of a

run is positive only at date t = 0, and then goes back to zero in the following periods.

Figure 1 shows an example economy, where the probability of a run is q = 0.02 and the loan

liquidation value is high (r = 0.25). In accordance with the characterization of the previous

section, in this case the loan liquidation value is so high that the bank is able to sustain a

run-proof contract equivalent to the no-run equilibrium, hence the economy is unaffected by

a positive probability of a run. With a contract with possible runs, instead, the top left panel

of Figure 1 shows that credit would decrease (i) in anticipation of a possible run even if not

realized (in the example, by around 8.7 percent), and (ii) if a run is actually realized (by

around 15.3 percent). In the former case, the bank tightens credit in order to increase night

consumption, and provide more intratemporal risk sharing against the possible realization of

12Liquid assets are the sum of checkable deposits and currency held by the U.S. financial businesses. Financial
businesses include: finance companies; securities brokers and dealers; money market mutual funds; real estate
investment trusts; insurance companies and pension funds; government-sponsored enterprises. Source: Flow of
Funds of the United States. The assumption of a constant liquidity-to-GDP ratio is supported by the empirical
observation that the time series exhibits no statistically significant trend, and a low standard deviation (0.007)
around its mean.

13For example, according to some recent estimates, the average creditor of Lehman Brothers is supposed to
recover around 18 percent of the face value of her claim (Hardy, 2013). Arguably, this is a pertinent example,
as Lehman Brothers indeed suffered a self-fulfilling run, and was not covered by deposit insurance, as the bank
in our environment.
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Figure 1: Impulse responses of the run-proof contract and of the contract with possible runs,
with q = 0.02 and r = 0.25.

a run. In the latter case there is a further credit tightening to finance the consumption of

the depositors running. However, in contrast to the results of any static bank-run model, in

case of a run the bank does not liquidate all the loans in portfolio, but optimally addresses

the trade-off between its short-term incentives, that urges it to provide the highest possible

amount of consumption, and the provision of credit for the long-term growth of the real

economy. Interestingly, the disruption in credit provision following the realization of a run

leads to a drop in day and night consumption, which in turns allows a rebound in credit

provision, that then slowly decays back to its steady state. The bottom left panel of Figure 2

shows that the drop in consumption leads to massive ex-post welfare costs if a run is realized,

and negligible ones if it is not realized. Therefore, in expectations, the drop in welfare costs

is small, of around 2 percent of the maximum ex-post costs.

Figure 2 reports the evolution of a similar economy, but where the loan liquidation value

is lower (r = 0.05). In this case, the run-proof contract is distorted with respect to the no-run
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Figure 2: Impulse responses of the run-proof contract and of the contract with possible runs,
with q = 0.02 and r = 0.05.

equilibrium, as the bank, in order to satisfy the run-proof constraint in the cheapest possible

way, lowers the amount of night consumption and increases excess liquidity zt. Moreover, a

binding run-proof constraint distorts the Euler equation, and triggers a credit tightening of

around 6 percent. All this tightens the bank budget constraint in t + 1, and leads to a drop

in future day consumption, that is slowly reabsorbed. The resulting drop in expected welfare

is sizeable, and can be higher than the one of the contract with possible runs.

More generally, Figure 3 shows that, in the contract with possible runs, the higher the

probability of a run q, the higher the distortions induced by a run, hence the lower consump-

tion and loans. In contrast, for given probability of a run q, the higher the loan liquidation

value r, the lower the distortions induced by a run, hence the higher consumption and credit.

Moreover, for given loan liquidation value r, an increase in the probability of a run q, by tight-

ening credit, also tightens the amount that can be liquidated, and forces the bank to hold

an increasing amount of excess liquidity. Finally, for given probability of a run q, an increase
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Figure 3: The impact of a positive probability of a run on the deposit contract and bank
portfolio in the contract with possible runs, as a function of the loan liquidation value r (on
the x-axis).
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in the loan liquidation value r has the effect of lowering the need to hold excess liquidity,

but has a non-trivial positive effect on the amount of loans that the bank liquidates. To see

that, rearrange the equilibrium condition (45) by making use of the first-order condition with

respect to kt+1, and derive an expression for the Lagrange multiplier on the non-negativity

constraint of Dt:

ξDt = u′(c1t)− β(1 − q)F ′(kt+1)u
′(c1t+1)− q

[

π + β(1− π)
]

ru′(cR2t). (51)

From this expression, it is clear that a change in the loan liquidation value r has an effect

on liquidation through two channels: on one side, a higher loan liquidation value lowers the

distortions induced by a run (in particular, loans increase), and increases the marginal cost

of liquidation, in terms of forgone return (the second part of the right-hand side of (51)); on

the other, a higher loan liquidation value increases the direct advantage to rely on liquidation

to finance night consumption in the case of a run (the third part of the right-hand side of

(51)). The bottom panel of Figure 3 indeed shows that the first effect dominates when the

probability of a run q is small, and the second dominates when q is high.

4.2.1 The Banking Equilibrium with Runs

With the two contracts in hand, we conclude the analysis of the banking equilibrium with runs

by characterizing the choice between the run-proof contract and the contract with possible

runs. To this end, we calculate the welfare costs of both contracts with respect to the no-run

equilibrium, in terms of the constant percentage drop in consumption that would make the

no-run equilibrium equivalent to each of them, and let the bank choose the contract with the

lowest value.

As the preceding analysis of the equilibrium conditions suggests, the welfare costs of the

run-proof contract are independent of the probability of a run q (as runs are completely

ruled out), and decreasing in the loan liquidation value r, as the higher that is, the slacker

the run-proof constraint also is. Additionally, as the theory predicts, for a loan liquidation

value sufficiently high the run-proof contract is able to sustain an allocation equivalent to

the no-run equilibrium, and the welfare costs go to zero. Figure 4 shows that the welfare
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Figure 4: The welfare costs of the run-proof contract and of the contract with possible runs,
for different values of the loan liquidation value r (on the x-axis).

costs of the contract with possible runs are instead increasing in the probability of a run q

and, ceteris paribus, decreasing in the loan liquidation value r. In particular, for low values

of both the loan liquidation value r and the probability of a run q, the welfare costs of the

contract with possible runs are lower than those of the run-proof contract. The welfare costs

of the run-proof contract decrease faster with r than those of the contract with possible runs.

Hence, for every value of r, there exists a unique threshold q∗ above which the bank prefers

the run-proof contract. As the probability of a run q increases and the welfare costs of the

run-proof contract remain unchanged, the welfare costs of the contract with possible runs

increase. Therefore, the threshold q∗ is decreasing in the loan liquidation value r, up to the

point at which the bank chooses to be run proof regardless of the probability of a run q: put

differently, q∗ tends to zero as the loan liquidation value r increases.

Figure 5 provides the graphical representation of the contractual choice in the banking

equilibrium with one-period runs: there exists a small region of the parameter space where
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the bank prefers a contract with possible runs to a run-proof contract. Moreover, for a loan

liquidation value higher than around 0.17, the bank is able to offer a run-proof contract

equivalent to the no-run equilibrium, and a positive probability of a run affects neither the

portfolio allocation nor the banking contract. In between, instead, the bank chooses the run-

proof contract, but its allocation is distorted with respect to the no-run equilibrium. This

result concludes the characterization of the banking equilibrium with one-period runs, and

allows us to quantify the distortion that this type of financial fragility brings about. In fact,

the welfare costs of the banking equilibrium with runs, resulting from its comparison to the no-

run equilibrium, come out to be the highest whenever the loan liquidation value is the lowest,

and the probability of a run is so high that the bank chooses the run-proof contract. This

combination of parameters is associated with welfare costs of around 0.23 percentage points
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Table 1: The threshold q∗, comparative statics

r = 0.01 r = 0.02 r = 0.05 r = 0.1 r = 0.2 r = 0.3

σ = 2; π = 0.02 0.0134 0.0129 0.0054 0.0015 0.0000 0.0000
σ = 2; π = 0.04 0.0173 0.0167 0.0100 0.0019 0.0000 0.0000
σ = 3; π = 0.02 0.0119 0.0112 0.0042 0.0000 0.0000 0.0000

in units of consumption equivalents, roughly equivalent to a constant yearly consumption loss

of US$27 Billion per year, or 0.16 percent of U.S. GDP, at 2014 levels.

4.2.2 Robustness Checks

We conclude the characterization of the banking equilibrium with runs by checking the robust-

ness of the results to changes in some parameters, namely the probability of the realization

of the idiosyncratic shock and the coefficient of relative risk aversion. As far as the first one

is concerned, we follow an alternative calibration strategy. Telyukova and Visschers (2013),

using CEX data, estimate the standard deviation of the idiosyncratic component of the house-

hold consumption of “cash goods”, defined as goods purchased only with liquid assets. We

calibrate π so as to match their most conservative estimate (st.dev=0.169), and find a value of

around 0.04, in the same order of magnitude of our original choice. The second row of Table 1

shows that our results are qualitatively unchanged, and quantitatively robust: in equilibrium,

the bank still chooses the run-proof contract for values of the probability of a run q higher

than a threshold q∗, which is, as before, decreasing in the loan liquidation value r. Similarly,

in the last row of Table 1, we report the thresholds q∗ for a coefficient of relative risk aversion

equal to 3, and find our conclusions qualitatively unaltered: for given relative risk aversion,

q∗ is relatively low and decreasing in the loan liquidation value. Ceteris paribus, the higher

relative risk aversion is, the higher the distortion of the contract with possible runs with

respect to the no-run equilibrium, and the lower the threshold q∗ at which the bank prefers

to switch to a run-proof contract. This is a consequence of the fact that the more risk averse

the depositors are, the less they tolerate any difference in their ex-post consumption profiles,

hence the more the bank distorts the economy when the probability of a run is positive.
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4.2.3 The Welfare Costs of Liquidity Requirements

Based on the previous results, we now assess the effect on welfare of a regulatory intervention

aimed at making the economy immune from financial fragility. To this end, we focus on the

welfare costs of imposing a run-proof liquidity requirement, equal to the run-proof constraint

(20), regardless of the loan liquidation value r and of the probability of a run q. The main

results of the banking equilibrium with runs are that, for given loan liquidation value r, there

exists a threshold q∗ for the probability of a run, below which the bank prefers a contract

with possible runs to a run-proof contract, and that this threshold is decreasing with the loan

liquidation value r itself. Therefore, imposing a run-proof liquidity requirement can generate

no positive welfare gain with respect to the banking equilibrium with runs. Conversely, a

run-proof liquidity requirement can generate welfare costs, from forcing the bank to be run

proof in that region of the parameter space where it would rather let runs happen with some

positive probability. Thus, the highest distortion of imposing a run-proof liquidity requirement

arises when the probability of a run q and the loan liquidation value r are both at their lowest

levels. That leads to a increase in welfare costs, with respect to the banking equilibrium with

runs, of around 0.16 percent in units of consumption equivalents in the baseline calibration,

or of 0.20 percent with the higher probability of the idiosyncratic shock (π = 0.04), or of 0.15

percent with a coefficient of relative risk aversion equal to 3. These numbers roughly amount

to a yearly costs (in terms of 2014 consumption expenditure) of between US$18 and 23 Billion

per year, or of between 0.11 and 0.14 percent of U.S. GDP, at 2014 levels.

4.2.4 Equilibrium with Narrow Banking

In the previous sections, we characterized the banking equilibrium with runs in an economy

where a bank could provide consumption in the case of a run both with liquidity and by

liquidating loans. Yet, in the recent years there has been a revamped interest in the concept

of “narrow banking”, according to which all deposits should be backed by extremely liquid

resources, such as currency or central bank reserves, in order to guarantee the stability of the

system itself. In fact, this idea was first proposed in the late Thirties, as part of the so-called

“Chicago Plan”, with the intended aim to gain a better control of the credit cycle, reduce
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private debt, and eliminate bank runs (Fisher, 1936).

To analyze the welfare costs of narrow banking, we characterize the run-proof contract in

an environment where the bank has to satisfy the “narrow-banking” constraint:

zt ≥ (1− π)c2t. (52)

This expression states that, in equilibrium, the bank has to be run proof while at the same

time avoiding loan liquidation, by holding sufficient excess liquidity to cover at any point

in time for the demand of night consumption of the (1 − π) day consumers who might run.

More formally, the bank solves the banking problem in (17) (with Dt = 0 for every t) subject

to the budget constraints, the non-negativity constraint zt ≥ 0, and the narrow-banking

constraint (52). Attach to these constraints the Lagrange multipliers βλt(st−1), βξ
z
t and βχt,

respectively. The first-order conditions of the program read:

c2t : πu′(c2t) = πλt(st−1) + (1− π)χt, (53)

c1t+1 : u′(c1t+1) = λt+1(st), (54)

kt+1 : λt(st−1) = βF ′(kt+1)λt+1(st), (55)

zt : χt + βλt+1(st) + ξzt = λt(st−1). (56)

Clearly, as in equilibrium c2t has to be positive in order to satisfy the Inada conditions,

the narrow-banking constraint ensures that also excess liquidity zt has to be positive in

equilibrium, therefore ξzt is equal to zero, by complementary slackness. This, together with

the first-order conditions with respect to kt+1 and zt, allows us to characterize the equilibrium

value of the Lagrange multiplier χt = β(F ′(kt+1) − 1)λt+1(st), which is strictly larger than

zero, as F ′(kt+1) > 1 and λt+1(st) has to be positive in equilibrium to satisfy the Inada

conditions. Hence, the narrow-banking constraint is binding in equilibrium: the bank holds

excess liquidity in an amount which is exactly sufficient to pay night consumption to the

day consumers who might run. This marks a crucial difference between the equilibrium with

narrow banking and the banking equilibrium with runs of the previous sections: there is no
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Figure 6: Impulse responses of the banking equilibrium with narrow banking and of the run-
proof contract, with q = .02 and r = .05.

way in which a bank that satisfies the narrow-banking constraint can sustain an allocation

equivalent to the no-run equilibrium. Eventually, the excess liquidity that the bank is forced

to hold in period t is rolled over to period t + 1, relaxing the future budget constraint. The

distorted Euler equation, characterizing the equilibrium amount of intertemporal risk sharing,

accounts for that:

πu′(c2t) + (1− π)βu′(c1t+1) = βF ′(kt+1)u
′(c1t+1). (57)

This expression makes clear that, in equilibrium, the bank chooses a portfolio allocation

such that the marginal benefits of holding liquidity, in terms of current consumption and

relaxation of the future budget constraint through excess liquidity, is equal to the marginal

benefits of issuing loans. Moreover, the equilibrium allocation satisfies the incentive compat-

ibility constraint: as βF ′(kt+1) > 1, the distorted Euler equation implies that πu′(c2t) + (1−

π)βu′(c1t+1) > u′(c1t+1), hence c2t < c1t+1, by concavity of the felicity function.
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The plots in Figure 6 compare the asset portfolio and the deposit contract of a typical

equilibrium with narrow banking to the corresponding run-proof contract. It is clear that

forcing the bank to be run proof and to avoid liquidation exacerbates its reaction to financial

fragility, as it leads to a credit tightening almost double the size of that triggered by a

run-proof contract (6 vs 11 percent). As before, we can also calculate the welfare costs of

imposing on the economy a narrow-banking liquidity requirement equivalent to the narrow-

banking constraint (52), irrespective of the probability of a run q and of the loan liquidation

value r. To this end, we again compare the welfare costs of the banking equilibrium with runs

to the welfare costs of the banking equilibrium with narrow banking. Differently from the case

of imposing a run-proof liquidity requirement, the highest increase in welfare costs, compared

to the banking equilibrium with runs, now arise whenever the loan liquidation value r is so

high that the bank would be able to sustain a run-proof contract equivalent to the no-run

equilibrium, while, with narrow banking, it is forced to distort the equilibrium allocation. For

our main parameter choice, this generates an increase in welfare costs of around 0.19 percent

in units of consumption equivalents, equivalent to a drop in real consumption of around US$22

billion per year, or 0.13 percent of U.S. GDP, at 2014 levels.

4.3 Multi-Period Runs

In this final section, we complete our analysis with the characterization of the banking equi-

librium when the probability of a run can stay positive for more than one period. To this

end, we assume that, as in the model of the previous section, the economy starts with a

period of financial fragility, i.e. with a positive probability of a run q0 = q > 0, and make

two key extensions. First, in every subsequent period t > 0, we introduce a positive prob-

ability P (qt+1 = 0 | qt = q) that the probability of a run qt+1 goes to zero, i.e. that the

economy exits financial fragility and starts its transition back to the no-run steady state, and

a complementary probability P (qt+1 = q | qt = q) = 1 − P (qt+1 = 0 | qt = q) that it stays

positive at qt+1 = q. We calibrate this probability to 0.3125, to match the average duration of

a financial crisis according to Reinhart and Rogoff (2014). Second, we rewrite the per-period
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utility function as follows:

W (c2t, c1t+1) = (1− qIt)
(

πu(c2t) + β(1− π)u(c1t+1)
)

+ qIt
[

π + β(1− π)
][

u(cR2t) + ǫt
]

.

(58)

In it, ǫt is a publicly observable shock to the utility of the depositors in the case of a run, and

is i.i.d. with a continuous distribution function F (ǫt). Adding this type of shock is common

practice in the sovereign default literature after the contribution of Chatterjee and Eyigungor

(2012), as it ensures the continuity of the value function and the convergence of the solution

algorithm, and can be interpreted as a shock to depositors’ tastes or an institutional shock

to the economy during a financial crisis.

The bank observes both qt and ǫt before choosing the asset portfolio and deposit contract,

and forms expectations on the future duration of financial fragility and the utility that the

depositors can enjoy at a run. The value function of the banking problem incorporates these

expectations: with probability P (qt+1 = 0 | qt = q) the economy will exit financial fragility

in the following period, and with probability 1 − P (qt+1 = 0 | qt = q) financial fragility will

continue. More formally, the value function reads:

V (at, st−1 | qt = q) = max
{c2t,c1t+1,kt+1,zt,Dt}

W (c2t, c1t+1)+

+ β
[

P (qt+1 = 0 | qt = q)V (at+1, st | qt+1 = 0)+

+ (1− P (qt+1 = 0 | qt = q))Eǫ[V (at+1, st | qt+1 = q)]
]

, (59)

where Eǫ[·] is the expectation with respect to the shock ǫt+1, and the value function when

qt = 0 is simply the no-run value function:

V (at, st−1 | qt = 0) = max
{c2t,c1t+1,kt+1,zt,Dt}

W (c2t, c1t+1) + βV (at+1, 0 | qt+1 = 0). (60)

Recall that, in every period of financial fragility, the bank takes a discrete choice between

the run-proof contract and the contract with possible runs. The dummy variable It takes the

values 0 if the bank chooses to be run proof at date t and 1 if it chooses a contract with
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possible runs. Consequently, the bank chooses the run-proof contract at date t if:

V (at, st−1 | qt = q,It = 0) ≥ V (at, st−1 | qt = q,It = 1) + qt
[

π + β(1 − π)
]

ǫt. (61)

We can denote ǫ̃t = qt
[

π + β(1− π)
]

ǫt, and rearrange the previous expression in:

ǫ̃t ≤ V (at, st−1 | qt = q,It = 0)− V (at, st−1 | qt = q,It = 1) ≡ V ∗
t . (62)

This implies that the probability of the bank choosing the run-proof contract at any period

t is F̃ (V ∗
t ), and that we can rewrite the expected value function as:

Eǫ[V (at, st−1 | qt = q)] =F̃ (V ∗
t )V (at, st−1 | qt = q,It = 0)+

+ (1− F̃ (V ∗
t ))V (at, st−1 | qt = q,It = 1). (63)

The introduction of the shock ǫt is equivalent to introducing randomization in the problem.

In the discrete choice literature, the distribution of the shock is either normal distribution

or the generalized extreme value (GEV) distribution (Arcidiacono and Ellickson, 2011). We

choose the latter because this distribution allows us to write a closed-form expression for the

probability at date t of choosing the run-proof contract, as a function of the two alternative

value functions (McFadden, 1978):

F̃ (V ∗
t ) =

1

1 + exp
(

V (at, st−1 | qt = q,It = 0)− V (at, st−1 | qt = q,It = 1)
) . (64)

To sum up, in order to characterize the banking equilibrium with runs, we need to calculate

the expected value functions of the no run equilibrium in (60) as well as of the run equilibrium

in (63) at every point in time. The former is straightforward, and we solve it by a standard

value function iteration. As far as the latter is concerned, we instead iterate over a grid of the

three-dimensional state space {kt, c1t, zt−1}, in order to calculate at according to the algorithm

described in Appendix A. Then, with the expected value functions in hand, we simulate the

economy: first, starting with financial fragility in the first period (i.e. q0 = q > 0), we use
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the probability P (qt+1 = 0 | qt = q) to draw the duration of financial fragility (i.e. the

number of periods with qt = q); second, in every period of financial fragility, we use q to draw

the occurrence of a run. For different combinations of the probability of a run q and loan

liquidation value r, we simulate the economy 10,000 times over 40 periods. We solve for the

banking equilibrium with runs and for the two regulated equilibria, where the bank is forced

to satisfy either the run-proof constraint (20) or the narrow-banking constraint (52) in every

period.

Figure 7 shows the average evolution of the same example economy of Figure 2, where the

probability of a run and the loan liquidation value are q = 0.02 and r = 0.05, respectively. In

this case, the economy suffers a credit tightening on impact of around 6 percentage points,

leading to a GDP drop on impact of almost 3 percentage points. In addition to that, financial

fragility is long-lasting (its average half-life is of around 4 periods), and this leads to an

equally long-lasting low-credit recovery, before the economy exits financial fragility and starts

its transition path towards the steady state. Financial fragility also leads to a drop in both

night and day consumption, implying a welfare drop on impact of around 9 percentage points,

and again a long-lasting recovery.

Table 2 reports the share of periods of financial fragility in which the bank independently

chooses to be run proof, and shows that it is weakly increasing in both the probability of a

run q and the loan liquidation value r. Moreover, these numbers confirm and generalize the

result of the previous section: similarly to the economy with one-period runs, there exists a

threshold probability of a run q∗ at which the bank independently chooses to be fully run

proof, and this threshold is decreasing in the loan liquidation value r.

Table 3 reports the welfare costs of the banking equilibrium with runs and of the two

regulated equilibria. As in the previous section, we calculate the welfare cost in terms of the

permanent increase in consumption needed to provide to the depositors the same present

discounted value of welfare of the no-run banking equilibrium. An increase in the probability

of a run q affects the welfare costs of the banking equilibrium with runs in two ways: on one

hand, runs are more likely to happen, and the resulting credit tightening and loan liquidation

increase the welfare costs; on the other hand, as shown in Table 2, the bank is also more
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Figure 7: Impulse responses of the banking equilibrium with multi-period runs, with q = 0.02
and r = 0.05.

likely to be run proof. As long as the bank chooses the contract with possible runs with

some positive – albeit small – probability, which is true for low values of the probability of

a run q and loan liquidation value r, the rare realization of a run increases the welfare costs,

and more so the higher q and r are. For some combinations of parameters, this can result

in banking equilibria with higher welfare costs than the corresponding regulated equilibria.

From the results in Table 3, we see that the welfare costs of the banking equilibrium with

runs are weakly increasing in both the probability of a run q and the loan liquidation value

r, go to zero for a sufficiently high loan liquidation value, and reach their peak at around

3.6 percentage points in units of consumption equivalents. This number is equivalent to a

constant yearly consumption loss of around US$415 Billion, or around 2.5 percent of U.S.

GDP, at 2014 levels.

Finally, we provide a definitive answer to our original question: what are the welfare costs

of a liquidity requirement aimed at making the economy immune from financial fragility?
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Table 2: Share of run-proof periods in the banking equilibrium with multi-period runs (% of
number of periods with positive q)

r = 0.01 r = 0.03 r = 0.05 r = 0.07 r = 0.1 r = 0.25

q = 0.06 99.5719 99.8428 99.8428 99.9115 99.9766 100.000
q = 0.04 99.5286 99.7353 99.8085 99.9115 99.9766 100.000
q = 0.02 78.2107 85.3622 99.8428 95.3887 99.9766 100.000
q = 0.01 75.8462 76.4005 93.7073 88.6384 99.8373 100.000
q = 0.005 55.7366 60.1632 90.7725 77.5986 99.9012 100.000
q = 0.001 3.3396 24.4957 28.2333 28.9919 74.6019 100.000

Again, we define the welfare costs as the distortion, in terms of extra welfare costs that

would arise in the banking equilibrium with runs, if we imposed either the run-proof liquidity

requirement (20) or the narrow-banking liquidity requirement (52) in every period, regardless

of the probability of a run q and of the loan liquidation value r. As suggested by the theory,

the welfare costs of a run-proof liquidity requirement are independent of the probability of

a run q and decreasing in the loan liquidation value r, with an upper bound at around 3.4

percentage points; those of a narrow-banking liquidity requirement are instead independent

of both the probability of a run q and of the loan liquidation value r and slightly higher, at

almost 3.5 percentage points.

Table 3 shows that, differently from the case of one-period runs, for some combinations

of parameters the imposition of a run-proof or a narrow-banking liquidity requirement can

indeed bring about some welfare gains, with respect to the banking equilibrium with runs:

that happens because, for intermediate values of the probability of a run q, the bank does not

find convenient to be completely run-proof, but runs still realizes (albeit in extremely rare

occasions). Quantitatively, this means that imposing a run-proof or a narrow-banking liquidity

requirement can generate welfare gains of up to around 0.22 and 0.10 percentage points in units

of consumption equivalents, respectively. Conversely, for most combinations of parameters,

the imposition of a run-proof or a narrow-banking liquidity requirement leads to an increase

in welfare costs. In fact, the run-proof liquidity requirement forces the bank to be run proof in

that region of the parameter space where it would rather let runs happen with some positive

probability. Thus, the highest increase in welfare costs, with respect to the banking equilibrium

with runs, arises when the probability of a run q and the loan liquidation value r are both at
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Table 3: The welfare costs of the banking equilibrium with multi-period runs (% of consump-
tion equivalents)

r = 0.01 r = 0.03 r = 0.05 r = 0.07 r = 0.10 r = 0.25

q = 0.06 3.4287 2.6482 1.9411 1.3082 0.3660 0.0000
q = 0.04 3.4105 2.6527 1.9370 1.2051 0.3651 0.0000
q = 0.02 3.6033 2.9533 1.9271 1.5027 0.3642 0.0000
q = 0.01 3.2267 2.6471 1.9857 1.4874 0.3697 0.0000
q = 0.005 2.5117 2.1895 1.8861 1.3748 0.3646 0.0000
q = 0.001 0.8285 1.1564 0.9988 0.7584 0.3739 0.0000

Run proof 3.3761 2.6275 1.9201 1.2944 0.3616 0.0000

Narrow banking 3.4973 3.4973 3.4973 3.4973 3.4973 3.4973

their lowest level, and is of around 2.5 percentage points in units of consumption equivalents.

This number amounts to a cost (in terms of 2014 real consumption expenditure) of almost

US$300 Billion per year, or of around 1.8 percent of U.S. GDP, at 2014 levels. Imposing

the tighter narrow-banking liquidity requirement, instead, would increase the welfare costs

whenever the loan liquidation value r is so high that the bank is able to implement the no-run

equilibrium, and the regulation forces it to be extremely liquid. Therefore, the corresponding

maximum increase in welfare costs, with respect to the banking equilibrium with runs, is

again of around 3.5 percentage points in units of consumption equivalents, corresponding to

a constant yearly drop in consumption of around US$405 Billion, or 2.4 percent of U.S. GDP,

at 2014 levels.

5 Concluding Remarks

The present paper contributes to the literature on the economics of banking and financial

fragility by studying the welfare implications of self-fulfilling bank runs, and of the liquidity

requirements needed to offset them, in a neoclassical growth model with a fully microfounded

banking system and multiple equilibria. The first takeaway of the analysis is that self-fulfilling

runs might lead to a credit tightening, and a resulting drop in GDP, due to the bank antici-

pation of them as well as to their actual realization. These effects can be very persistent, but

the banking system can avoid them by independently choosing to be run proof, at the cost of

lower intratemporal and intertemporal risk sharing. The banks’ choice of whether to be run

proof crucially depends on the fundamentals of the economy, and highlights that self-fulfilling
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runs are not an inevitable by-product of all competitive banking systems: indeed, it is com-

petition among banks that provides the correct incentives for them to avoid risky investment

strategies, that might harm depositors’ savings and give rise to financial fragility.

Our second takeaway is that self-fulfilling bank runs are costly. In fact, their potential

welfare costs are neither as low as the welfare costs of business cycles (Lucas, 1987) or inflation

(Lucas, 2000), nor as high as those of rare macroeconomic disasters (Barro, 2009) or long-run

risk (Epstein et al., 2014), but are comparable to some recent estimates of the welfare costs

of large unemployment shocks, like the Great Depression (Chatterjee and Corbae, 2007).

Our third takeaway is that there exists some space for liquidity requirements to make the

banking system more resilient to self-fulfilling runs. However, the increase in welfare costs

that might arise whenever the banks are forced to hold unnecessary high amounts of liquidity

might be substantial, and higher than some recent estimates of the welfare costs of capital and

liquidity requirements (Van den Heuvel, 2008, 2016). In particular, our results highlight how

important the microfoundations of the banking system are, in order to properly quantify these

costs. Moreover, they confirm the danger of imposing a 100-percent liquidity requirement that

forces the banks to be narrow, as that would bring about the highest welfare costs exactly

when the banking system could avoid self-fulfilling runs at zero costs. Moreover, any other

feature of the economy that is not part of the present environment, and that would aggravate

the consequences of a run, would force the banks, because of perfect competition, to be more

run proof, thus lowering the welfare costs of imposing a run-proof liquidity requirement. In

contrast, the welfare costs of narrow banking would be unaffected, thus further highlighting

the dangerousness of such a regulatory intervention.

Finally, it is worth noticing that in our work the depositors’ behavior is consistent with

the features of the environment, but still depends on a shift of their expectations that is left

unexplained. In other words, a dynamic theory of the joint evolution of depositors’ expec-

tations and the probability of a run is missing. One way to address this point would be via

the introduction of a “global game” among the depositors, like in the static environment of

Morris and Shin (1998) and Goldstein and Pauzner (2005). We leave the analysis of this issue

for future research.
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Appendices

A Details of the Numerical Algorithm

In order to characterize the banking equilibrium with runs, we need to calculate, for every

possible combination of loan liquidation value r and probability of a run q, the expected value

function of the no-run equilibrium in (60) as well as of the banking equilibrium with runs in

(63). The former is straightforward, and we solve it by a standard value function iteration.

To calculate the expected value function of the banking equilibrium with runs, instead, we

need the value functions specific to the two alternative contracts that the bank can offer: the

value function of the run-proof contract, V (at, st−1 | qt = q,It = 0), and of the contract with

possible runs, V (at, st−1 | qt = q,It = 1). To get to these, we take the following steps, for

every parameter combination:

(i) build a 20x20x20 grid for the state space {kt, c1t, zt−1};
14

(ii) for every grid point, make an initial guess EV 0 for the expected value function of the

banking equilibrium with runs;

(iii) start iterating: solve for the run-proof contract and the contract with possible runs and,

using EV 0, write down the value functions specific to the two alternative contracts;

(iv) using equation (63), find EV 1;

(v) repeat from step (iii) and iterate until convergence.

14For some combinations of the parameters, we increased the number of grid points to 30x30x30. However,
the heavy curse of dimensionality, and the lack of any significant difference in the results, led us to keep a
sparse grid for most of our simulations.
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