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Abstract
In recent years, the increasing life expectancy of the world’s popula-
tion, due to increased availability of prescribed medication, quality of
health care services, quantity of health care institutions and quality of
life, combined with a sharp decrease in birth rates over time, has proven
to be a challenging problem for governments worldwide (particularly
in developed countries). Both of these factors put at risk the sustain-
ability of state-funded welfare programs (e.g., social security) and also
lead to a decrease in available workforce and tax revenue (including
social benefit contributions) in the near future. With the tendency for
these problems to worsen in the next decades (severity varies between
countries), it is of paramount importance to estimate the extension
of human life in order to analyse the severity of this phenomenon.
Stochastic differential equations have been used recently to model the
evolution of death rates. In fact, such models have some advantages
when compared to the deterministic ones since we can input random
environmental fluctuations and evaluate the uncertainty in forecasts.
The main goal of this paper is to apply and compare stochas-
tic differential equations death rate models separately for each age
and sex and forecast Portuguese death rates until the year 2030.

Keywords: Death rates, Geometric Brownian motion, Stochastic Gompertz
model, Stochastic differential equations, Forecasting, Life insurance
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2 Stochastic differential equations death rates models: the Portuguese case

1 Introduction
In Portugal, like in the majority of western countries, the age structure of
the population has been changing, marked by an ageing population due to
the combined effect of decreasing birth rates and increasing life expectancy
throughout the years. According to some projections for the Portuguese resi-
dent population in the years of 2018 – 2080, the ageing population (individuals
aged 65 years or more) will represent about 37% of the resident population in
2080, considering the expected scenario, see Instituto Nacional de Estatística
(2020).

However, if it’s certain that the mortality risk increases with the age of the
individual, mortality rates have been plummeting worldwide. This fact has
led to the study of factors, both intrinsic and extrinsic, that can explain this
evolution. Various types of models, deterministic or more recently stochastic
models, have been tested giving rise, namely, to comparative studies to assess
which is the best model to apply in this context (see Booth and Tickle (2008),
Aro and Pennanen (2011) and Shryock and Siegel (1976)). For all these rea-
sons, and despite the fact that human mortality is a demographic variable
that has been studied exhaustively, the main objective of this work is to apply
models of stochastic differential equations (briefly, SDE) that, through cross-
sectional analysis of the mortality data over time, allow us to estimate the
future trend of the decreasing death rate phenomenon for all age groups and
for each sex, and to compute step-by-step (SS) and long-term (LT) forecasts.

The data related to the Portuguese death rates and used throughout this
paper was obtained from the Human Mortality Database (2022), which cor-
responds to the gross death rates and represents the division between the
number of deaths (total for a country in a given time period for all causes of
death) and an estimate of the resident population (corresponding to the pop-
ulation exposed to death risk in the same age interval). In this manuscript we
will be using 200 time series, with an annual frequency, available for the years
1940 – 2020, for 100 annual age groups (ages 0 – 99) and for both sexes.

In Demography, it’s common for data to be available by cohort (in a lon-
gitudinal perspective through time). A cohort represents a set of individuals
born in the same year and who are followed throughout their lives. In this
case, where a longitudinal approach is used over time, there is no distinction
between age and calendar year. Therefore, it’s very difficult to model all ages
of the human life span as it’s necessary to have a very high number of param-
eters (often more than eight for each cohort, because the mortality trajectory
is very irregular).

For the purpose of this approach, see the data representation in Figure
1, where the evolution of mortality in the various phases of the life curve
is described. In this case, the year 1994 was fixed, but the shape, usually
described in the literature as a “J-shaped curve,” has not changed significantly
over time despite the reduction in infant mortality and greater longevity in
the last few decades.
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Fig. 1 Death rates of the Portuguese population (longitudinal representation)

Alternatively, the cross-sectional approach we follow makes sense, as we
consider events that affect all ages. Among others, we highlight, on the pos-
itive side, changes in living conditions over time of a socio-economic nature,
advances in medicine, increased quality of health care services and number
of health care institutions. Also, climate change that generates extreme phe-
nomena or other catastrophic situations can globally affect the Portuguese
population, in this case, increasing mortality risk.

The phenomenon thus described has a strong decreasing trend in the period
under analysis, as seen in Figure 2. At almost all ages, the death rates are
higher in males than in females, although with a different evolution at each
age. Furthermore, throughout this paper, we divided each time series related
to the observed death rates of the Portuguese population1 into two subsets:
observed death rates between the years 1940 – 2009 for model adjustment and
between the years 2010 – 2020 for forecast validation.

1940 1960 1980 2000 2020

0.
01

0.
02

0.
03

0.
04

0.
05

Female

Year

D
ea

th
 R

at
e

1940 1960 1980 2000 2020

0.
01

0.
02

0.
03

0.
04

0.
05

Male

Year

D
ea

th
 R

at
e

Fig. 2 Death rates of individuals aged 66 along time (cross-sectional representation)

1which have 81 observations and are related to the observed death rates documented in each
year of analysis, from 1940 to 2020
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This paper is organized as follows. In Section 2, we apply both the Geomet-
ric Brownian motion and the Stochastic Gompertz model to the Portuguese
mortality data, in order to compute adjustments and forecasts. Furthermore,
the statiscal aspects of parameter estimation and validation for both models
are also analised and model comparison is also performed in order to conclude
which model is the best to forecast Portuguese mortality rates. The main
conclusions from this research are stated in Section 3.

2 Stochastic differential equations death rates
models

2.1 The Geometric Brownian motion
The Geometric Brownian motion (GBM) is a stochastic process usually used
to model the price of stocks and other economic variables (as in, for instance,
Black and Scholes (1973) and Garcin and Grasselli (2022)). This is also the
solution to the stochastic differential equation commonly known as the Black-
Scholes model (also, in some literature, designated as the diffusion equation of
Black-Scholes), with µ and σ representing, respectively, the mean growth rate
and the volatility. The stochastic differential equation representing the GBM
is

dX(t) = µX(t)dt+ σX(t)dW (t), σ > 0, X(0) = x0, (1)
with W (t) representing a standard Wiener process at time t. In this case, X(t)
represents the price of a given financial asset along time t, but this equation
has various applications, not limited to only modelling economic variables,
since it can also be used to model population growth, as seen in Brites (2010)
and Braumann (2019), as well as other variables in various areas of science.
The solution of Equation (1) is:

X(t) = X(0) exp

{(
µ− σ2

2

)
t+ σW (t)

}
, X(0) = x0. (2)

Let’s consider that the death rates of the Portuguese population follow a
GBM. In this regard, notice that, in fact, when observing the death rates of
the Portuguese population throughout time, they appear to have a decreasing
linear trend, as was previously seen in Figure 2. Assume X(t) = Xk(t) is the
death rate of a given individual aged i with i = 0, . . . , 99 and sex j, with j = 1
if female and j = 2 if male, at instant t and with k = i+ 100(j − 1) to cover
all ages in the life curve for both sexes. To make reading easier, we use X(t)
instead of Xk(t) throughout this section, applying the model to each age and
sex. Assume also that the initial condition X(0) = x0 is known. If we denote
Y (t) = h(t,X(t)) = ln

(
X(t)
x0

)
, then h(t, x) = ln

(
x
x0

)
is a strictly increasing

class C2 function in x. Applying the Itô’s formula we can obtain the SDE

dY (t) = Rdt+ σdW (t), Y (0) = 0, (3)
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where R = µ − σ2/2. Because we are using X(t) instead of Xk(t), the same
reasoning can be applied to the model’s parameters, which we could have
denoted as Rk and σk, representing the average growth rate of Yk(t) and the
effect of random fluctuations on mortality dynamics, respectively. 

The solution for Equation (3), for each age and gender in instant t, is given
by

Y (t) = Rt+ σW (t), (4)
which follows a normal distribution with mean Rt and variance σ2t, that is,

Y (t) ∼ N
(
Rt, σ2t

)
, (5)

where X(t) has a log-normal distribution with expected value E[X(t)] =
x0 exp{Rt}. Therefore, we can write Equation (4) in its original form as

X(t) = X(0) exp{Rt+ σW (t)}, X(0) = x0.

2.1.1 Estimation
From (5) we obtain the probability density function, f(t, y), of Y (t) which is
given by

f(t, y) =
1√
2πV t

exp

{
− (y −Rt)2

2V t

}
, V = σ2.

Let tn = t0 + n, n = 0, 1, . . . , N , represent the years in which the death rates
of the Portuguese population were observed, for each age and gender (in this
case, all series have the same dimension). Considering Y (t0) = 0 and

Y (tn) = Y (tn−1) +Rtnn−1 + σ(W (tn)−W (tn−1)), (6)

where tnn−1 = tn− tn−1, the process Y (tn) conditioned by Y (tn−1) has normal
distribution with mean Y (tn−1)+Rtnn−1 and variance V tnn−1, since Y (tn−1) is
independent from W (tn)−W (tn−1). Thus, the transition probability density
function of Y (t) from tn−1 to tn is given by

fY (tn)|Y (tn−1)=yn−1
(yn) =

1√
2πV tnn−1

exp

{
−
(yn − yn−1 −Rtnn−1)

2

2V tnn−1

}
. (7)

Notice that R and V are, respectively, the mean and variance of the
logarithm of the death rates returns, ln

(
X(tn)

X(tn−1)

)
= Y (tn) − Y (tn−1). The

parameter vector denoted as p = (R, V ) can be estimated by the maximum
likelihood method. Since Y (t) is a Markov process, the log-likelihood function,
L, given the observed values Y (t1), . . . , Y (tN ), can be written as

L(p|Y (t1), . . . , Y (tN )) =

N∑
n=1

ln (fY (tn)|Y (tn−1)=yn−1
(yn))
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6 Stochastic differential equations death rates models: the Portuguese case

= −N

2
ln (2πV )− 1

2

N∑
n=1

ln (tnn−1)

− 1

2V

N∑
n=1

(yn − yn−1 −Rtnn−1)
2

2V tnn−1

.

Furthermore, we can obtain the explicit expressions of the maximum likelihood
estimators of p (see Brites (2010) and Braumann (2019)), by solving the system{

∂L(y; p)
∂R |R̂,V̂ = 0

∂L(y; p)
∂V |R̂,V̂ = 0,

obtaining, for tnn−1,

R̂ =
Y (tN )

tN
,

and

V̂ =
1

N

N∑
n=1

(yn − yn−1 − R̂tnn−1)
2

tnn−1

.

Since, here, the death rates of the Portuguese population are annual rates,
we can therefore assume that tnn−1 = 1, which simplifies significantly the com-
putations. This simplification is valid for all models applied to the data set
and displayed in the following subsections.

To obtain the confidence intervals (CI) for R and V , we can take into
account the asymptotic properties of the maximum likelihood estimators.
According to Casella and Berger (2002), the Fisher information matrix for this
case is

F =

 tN
V 0

0 N
2V 2

 .

On the other hand, the variance of each one of the parameters in p̂
are given by the diagonal values of the inverse of F . For each parameter
in p we can then obtain an approximation of the confidence interval lim-
its assuming a confidence level (1 − α) × 100%, denoted by CI(1−α)×100%,

using
(
p̂± z1−α

2

√
V̂ ar[p̂]

)
, where V̂ ar[p̂] represents the estimated variance

of p with its parameters replaced by the maximum likelihood estimates. More
specifically, the respective asymptotic CI, for R and V , are given by

CI(1−α)×100%(R) =

R̂∓ z1−α
2

√
V̂

tN

 ,
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and

CI(1−α)×100%(V ) =

V̂ ∓ z1−α
2

√
2V̂ 2

N

 ,

where zq denotes the q-quantile of the standard normal distribution. In this
case, we can also compute the exact confidence intervals, CIe(1−α)×100%, using
the exact distributions, as shown in Brites (2010) and Braumann (2019), which
are defined as

(R̂−R)

√
N − 1

N

tN

V̂
∼ t(N−1)

and
NV̂

V
∼ χ2

(N−1),

where t(N−1) and χ2
(N−1) represent the t-Student and Chi-squared distribu-

tions, respectively, in both cases with N−1 degrees of freedom. Thus, the exact
confidence intervals for both R and V are given by the following expressions

CIe(1−α)×100%(R) =

R̂± t1−α
2 ; (N−1)

√
N

N − 1

V̂

tN


and

CIe(1−α)×100%(V ) =

(
NV̂

χ2
1−α

2 ; N−1

,
NV̂

χ2
α
2 ; N−1

)
,

where tq; N−1 and χ2
q; N−1 represent the q-quantile of the t-Student and Chi-

squared distributions, respectively, in both cases with N−1 degrees of freedom.
If we have observed values up to a given time tN , with Y (tN ) = ytN , and

want to obtain a forecast for a given time t > tN , considering that Y (t) is a
Markov process, we have

E[Y (t)|Y (t1), . . . , Y (tN )] = E[Y (t)|Y (tN )],

and from Equation (6), we get

Y (t)|Y (tN ) ∼ N
(
Y (tN ) +R(t− tN ), V (t− tN )

)
.

Therefore, we can use for the long term (LT) forecasts in each age, for t > tN ,

Ŷ (t) = Ê[Y (t)|Y (tN ) = ytN ] = ytN + R̂(t− tN ), (8)

where Ê(·) represents the approximation value of the mathematical expecta-
tion. Since we do not know the exact value of R, we replace it by its maximum
likelihood estimate, R̂.
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The step-by-step (SS) forecasts are estimated following the same reasoning
as to obtain (8). However, we update t and the last observed value, as well as
the parameter estimates, each time we progress one step in time (in the case
of our work, one year).

Finally, using the Monte Carlo simulation method, we obtain an approx-
imation distribution of the forecast error, Ŷ (t) − Y (t), as well as the
forecasting confidence intervals. From (7), we get the mean and variance of
Y (tn)|Y (tn−1) = ytn−1

. We used, for each age and gender, the maximum likeli-
hood estimates for p and simulated a sufficiently large number of trajectories,
say r (in this case, we used r = 2000), represented by a vector Y (t). This way,
we obtained up to a certain year tN the maximum likelihood estimates, for
each one of the r replicas simulated, a new parameter vector p, the forecasts
Ŷ (t) (for t > tN ), the forecasting errors Ŷ (t)−Y (t), as well as the empirical
mean and variance of these in the group of the r replicas, in order to estimate
the mean and variance of the forecasting error.

Let’s denote Mt and Vt the respective empirical means and variances.
We can obtain an approximation CI for Y (t), for a certain age and gender
considered, considering

CI(1−α)×100%(Y (t)) =
(
Mt ± z1−α

2

√
Vt

)
.

2.1.2 Results
We adjusted the GBM to the observed death rates of the Portuguese popula-
tion, for each one of the ages selected from the life curve (ages 0 to 99) and for
each sex. We used the variable Y (t) = ln

(
X(t)
X(0)

)
for this purpose, with X(t)

representing the expected death rate at time t and X(0) representing the first
observed death rate of a given individual. 

Figures 3 and 4 illustrate the estimated parameters of the model used,
respectively R̂ and V̂ , which represent a different estimated parameter for
each age and gender, as well as the asymptotic confidence intervals, CI, and
exact confidence intervals, CIe, associated with each parameter. If we analyse
the behaviour of the estimated parameters, we conclude that parameter R̂ has
a small increasing tendency, which is quite noticeable during the first ages
analysed, increasing at a very slow pace after age 20. Furthermore, we also
conclude that, although the values of R̂ have a similar pattern (increasing
tendency in relation with age of the individual), the same cannot be said when
considering the estimated parameter V̂ , since it displays more fluctuations
between each age, which is most noticeable when analysing the ages between
18 and 30 and after age 95 (particularly in individuals of the male gender),
thus displaying a totally different pattern when compared to R̂. As for the
asymptotic confidence intervals, CI, and exact confidence intervals, CIe, for
each parameter R and V , we used a confidence level of 95% in order to compute
their values.
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Fig. 3 Estimates R̂, CI95% and CIe
95%

for the GBM
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Fig. 4 Estimates V̂ , CI95% and CIe
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for the GBM

For both parameters, the asymptotic and exact confidence intervals have
identical values (in Figures 3 and 4, the representation of both confidence inter-
vals almost overlap each other in most ages and both sexes), therefore, there
are no substantial benefits related with the use of exact confidence intervals.

The confidence interval range of R and V are, respectively, approximately
proportional to

√
V and to V . This fact explains the higher range in the con-

fidence intervals of R compared to the confidence intervals of V . Furthermore,
with respect to R, it explains also the massive range in the confidence intervals
when analysing male individuals aged 95 or more.

Results related with adjustments and forecasts of the death rates where
reversed to its original scale, X(t), instead of Y (t). Figure 5 shows the adjust-
ment (fixing σ = 0 in Equation (4) and replacing its parameters with the
maximum likelihood estimates) and forecasts for a 15 year old male.

We recall that we used for the adjustment the observed death rates
obtained for the years 1940 – 2009, setting aside the remaining ones (2010 –
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Fig. 5 GBM adjustments and forecasts for a 15 year old male

2020) for forecasting. Also, we have chosen to represent these values in Figure
5 (top) related with adjusted and forecasted values, since they reflect addi-
tional information to the error estimate, which stems from the comparison
of the tendency and forecasts of the GBM. Generally speaking, the results
obtained from the application of the GBM are quite good, since the model fits
well the observed death rates and provides reliable forecasts.

Furthermore, in order to measure the “goodness of fit” for the values, we
used as a quantitative criterion the mean squared error (MSE). In an overall
analysis of the results obtained, both adjusted and forecasted values are better
fitted (according to the criterion mentioned above), in data series related with
the female sex. In Figures 6, 7 and 8 we illustrate the respective MSE for each
age and sex, also for each method used (LT and SS).
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Fig. 6 MSE of the adjusted death rates (1940 – 2020) obtained from the GBM
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0 20 40 60 80 100

0.
00
0

0.
00
1

0.
00
2

0.
00
3

0.
00
4

Age

M
S
E

_
_
Female
Male

Fig. 8 MSE of the SS forecasts (2010 – 2020) obtained from the GBM
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The difference in the performance of the model between genders is more
noticeable2 after the age of 40. Also, after the age of 90, in both sexes, yet
more significant in the male sex, the model is not capable of replicating the
variability of the death rate time series and of obtaining an adequate adjust-
ment, hence the sharp increase in the MSE values, as illustrated in Figure 6.
However, and despite the MSE of the forecasts being extremely high when
considering older ages (90+ years) in comparison to other ages (as seen in
Figures 7 and 8), the model can still provide some forecasts to be considered,
since they tend strongly towards the observed death rate series averages (see
Figure 9).
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Fig. 9 Adjustment of the GBM with LT (on top) and SS (on the bottom) forecasts (2010
– 2020) for the ages 49 (on the left) and 99 (on the right) of the male sex

2.2 The Stochastic Gompertz model
An example of a deterministic model that can translate the Gompertz law for
mortality can be denoted as

dX(t) = bX(t) ln

(
a

X(t)

)
dt, (9)

where X(t) represents the death rate (varying throughout time) of a group of
individuals of a given age and gender, a the asymptotic death rate and b an
approach rate to the asymptotic regimen.

2which corresponds to a set of ages where, throughout time, the mortality pattern of the male
sex undergoes an inflexion relative to the prevailing overall downward trend
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For calculation convenience, let’s use Y (t) = ln(X(t)) and A = ln(a). Thus,
we can obtain an equivalent equation from (9)

dY (t) = −b(A− Y (t))dt. (10)

According to Brites and Braumann (2019a) and Brites and Braumann
(2019b), in order to obtain the Stochastic Gompertz model (SGM), we add
in (10) a noise source, ϵ(t), such that dW (t) = ϵ(t)dt. The standard Wiener
process, W (t) with parameter σ, reflects the accumulated effect of the “envi-
ronmental” disruptions which are present in the mortality phenomenon up
until a given time t, where the coefficient σ measures the intensity of the
environmental variability arising from the random disruptions which affect
the variable Y (t) around its dynamic tendency. This way, we obtain the
autonomous stochastic differential equation

dY (t) = −b(A−Y (t))dt+σϵ(t)dt = −b(A−Y (t))dt+σdW (t), Y (t0) = y0 (11)

with Y (t0) = y0 denoting the known initial condition, and where a denotes
the mean rate of asymptotic mortality, b denotes the velocity of approxi-
mation to asymptotic regimen and σ represents the intensity of the random
environmental fluctuations.

Let’s consider, as before, a simplification of notation X(t) = Xk(t) for the
death rates of individuals of a given age i and sex j, with k = i+ 100(j − 1),
on time instant t.

Note that several h transformations were experimented, according to the
recommendations in the reference literature (see for example Sokal and Rohlf
(1998)), in order to reduce the variance of the observed death rates series
and to try to obtain series with a better linear or smooth curved pattern
to facilitate modelling. In fact the logarithmic transformation is used more
frequently in modelling the growth rates of several variables in the field of
biology, proven to be the most favorable for this dataset.

The solution of (11) for each age and sex is

Y (t) = A+ (yt0 −A) exp {−b(t− t0)}+ σ exp {−bt}
∫ t

t0

exp {bs} dW (s).

For t0 = 0 we get

Y (t) = A+ (y0 −A) exp {−bt}+ σ exp {−bt}
∫ t

0

exp {bs} dW (s),

taking its expectation and variance we obtain

Y (t) ∼ N
(
A+ (y0 −A) exp {−bt} , σ2

(
1− exp {−2bt}

2b

))
.
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2.2.1 Estimation
Assume that t0 = 0 and let tn = n (n = 0, 1, 2, . . . , N) denote the years in
which the death rates of Portuguese population by age and sex were observed.
The transient probability density function of Y (tn) given Y (tn−1) is

fY (tn)|Y (tn−1)=yn−1
(yn) =

1√
2πs2

exp

{
−1

2

(yn − µ)2

s2

}
,

where

µ = E[Y (tn) | Y (tn−1)] = A+ (Y (tn−1)−A) exp
{
−btnn−1

}
,

and

s2 = V ar[Y (tn)|Y (tn−1)] = σ2

(
1− exp

{
−2btnn−1

}
2b

)
.

The parameter vector, p = (A, b, σ), can also be estimated. Hence,

L(p|Y (t1), . . . , Y (tN )) =

N∑
n=1

ln
(
fY (tn)|Y (tn−1)=yn−1

(yn)
)

= −N

2

(
ln (2π) + ln (s2)

)
(12)

− 1

2

N∑
n=1

(Y (tn)− µ)2

s2
.

To get p̂ one needs to compute
∂L(y; p)

∂A |Â,̂b,σ̂ = 0
∂L(y; p)

∂b |Â,̂b,σ̂ = 0
∂L(y; p)

∂σ |Â,̂b,σ̂ = 0,

and fixing b̂ (following the same reasoning as in Brites (2010)), we get

Â =

N∑
n=1

Y (tn)− Y (tn−1) exp
{
−b̂tnn−1

}
1 + exp

{
−b̂tnn−1

}
 N∑

n=1

1− exp
{
−b̂tnn−1

}
1 + exp

{
−b̂tnn−1

}
−1

,

and

σ̂ =

2b̂

N

N∑
n=1


(
Y (tn)− Â− (Y (tn−1)− Â) exp

{
−b̂tnn−1

})2
1− exp

{
−2b̂tnn−1

}



1/2

.
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Without loss of generality, assume that tnn−1 = tn − tn−1 = 1, since the
observed death rates of the Portuguese population obtained from Human Mor-
tality Database (2022), are analysed on an annual basis. From the equations
shown above, defining Â as a function of b̂ such that Â = ζ1(̂b), and defining
σ̂ as a function of both Â and b̂ such that σ̂ = ζ2(Â, b̂). Thus, we obtain a new
function, denoted as L∗, with the same optimal values as the log likelihood
function defined in (12), but depending solely on the parameter b, as

L∗(b|Y (t1), . . . , Y (tN )) = −N

2
ln

(
ζ2(ζ1(b), b)

2

2b

)
− 1

2

N∑
n=1

ln
(
1− E2

)
− b

ζ2(ζ1(b), b)2

N∑
n=1

(
(Y (tn)− ζ1(b)− (Y (tn−1)− ζ1(b))E)2

1− E2

)
,

where E = exp
{
−btnn−1

}
.

We get the maximum likelihood estimator of b, for each age and gender,
obtained by minimizing the symmetric of L∗(·) using the R built-in function
optimize. This method, described in Franco (2003), and applied on Brites
(2010), uses L∗ instead of L to compute the maximum likelihood estimators
of the parameter vector p, and is particularly useful when it’s difficult to find
an explicit expression for the estimators, with the main advantage of being
computationally efficient (without resorting to other complicated numerical
methods). Once we obtain b̂, the maximum likelihood estimators Â and σ̂ are
obtained from Â = ζ1(̂b) and σ̂ = ζ2(Â, b̂), respectively.

To obtain an approximation of the confidence intervals for the parameters,
we assume that we are in an asymptotic situation, considering the maximum
likelihood estimation properties. We also do an approximation of the Fisher
information matrix by computing the symmetric of the inverse of the Hes-
sian matrix from whose diagonal we obtain an approximation of the variances
related with the estimated parameters. Considering a parameter vector p and
its maximum likelihood estimator p̂, an approximation of the confidence inter-
val, CI(1−α)×100%, can be obtained the same way as for the GBM case, by
using (

p̂± z1−σ
2

√
V̂ ar[p̂]

)
,

where V̂ ar[p̂] represents an estimate of the parameter variance obtained from
the inverse of the Hessian matrix using the method described above. If we
have observations up until a given time tN and seek forecasts until a certain
time t, with t > tN , we have that, since we have a Markov Process

E[Y (t)|Y (t1), . . . , Y (tN )] = E[Y (t)|Y (tN )].
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Since

Y (t)|Y (tN ) ∼ N
(
A+ (Y (tN )−A) exp{−bt∗N}, σ2

(
1− exp{−2bt∗N}

2b

))
,

where t∗N = t− tN , we can use for the LT forecasts, considering each age and
sex,

Ŷ (t) = Ê[Y (t)|Y (tN ) = ytN ] = Â+ (ytN − Â) exp
{
−b̂t∗N

}
, (13)

where Ê(·) is the approximated value of the mathematical expectation,
replacing the exact values of A and b by its maximum likelihood estimates,
respectively Â and b̂.

The SS forecasts are estimated in the same way as in (13) however, we
update t, the last observed value, as well as the parameter estimates, each
time we progress one step in time (in this case one year).

2.2.2 Results
Like in Section 2.1.2 related to the GBM, we could adjust the SGM to the
observed death rates of the Portuguese population, for each age selected from
the life curve (0 – 99 years) and for each sex. For this purpose, we used, in
this specific case, the variable Y (t) = ln(X(t)).

Figure 10 illustrates the values of the SGM parameters, a, b and σ, for
each age and sex. Recall that we estimated the value A = ln(a), but we choose
to display the parameter in its original scale, a, which represents the average
asymptotic death rate (geometric mean). In the same figure, we illustrate the
values of the SGM parameters with the last 10 ages excluded. The plots related
with these are easily identified, since the age axis only takes values between 0
and 90 while in the first case it takes values between 0 and 100, in order to
show in more detail the behaviour of each estimated parameter when analysing
adult ages and make it possible to better understand the shape described in
each graph (mainly with regard to parameter b).

In fact, the results obtained regarding the model’s estimated parameters
are not surprising, considering the knowledge obtained from past research
projects and articles about the phenomenon under study. Hence, a increases
in relation with the age of the individual, presenting much higher values when
analysing the last ages from the life curve for which the probability of death
is higher.

Parameter b displays an upward trend when analysing the first ages of the
life curve followed by a sharp decrease at age 15, representing several increases
and decreases between the years of 16 – 80 and remaining at a level fluctuating,
on an average basis, around the value of 0.05 for both sexes. After age 80, the
estimated values of b increase up to twenty and six times its average values
for the male and female sexes, respectively.

As for σ, parameter that is associated with the stochastic integral term
of the model and measures the intensity of random fluctuations of the envi-
ronment upon observed death rates, we can say the following: The estimated
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values present an upward trend in the younger ages analysed (concerning
children and young people); After age 18, there is a slow decrease in these
values, stabilising only between the ages of 60 and 80, after which the pattern
described by the parameter shows a new increasing tendency, which translates
the susceptibility of the last ages analysed from the life curve, in which any
random event may cause death.

Figure 10 also suggests a greater variability of parameter estimates between
consecutive ages for b and σ compared to a. When we observe the pattern of
these estimates as a function of age, although it’s similar in both sexes, in a
and b, the estimated values are higher in males when compared to females,
while the opposite occurs in parameter σ.
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Fig. 10 SGM parameter estimates (a, b and σ) for each age and sex

In Figure 11 we illustrate the estimates of the adjustment (by fixing σ = 0
and replacing the model parameters by its maximum likelihood estimates) and
forecasts for a 29 year old female.

In general, the results of the application of the SGM are quite good. Indeed,
both the adjustment itself and the forecasts are generally better in the female
sex (like in the GBM). This difference between sexes is higher after the age of
80 (as seen in Figures 12, 13 and 14). Therefore, like in the previous subsection
regarding the GBM, the SGM also seems adequate to model this type of data,
considering the promising results obtained so far.
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Fig. 11 SGM adjustments and forecasts for a 29 year old female
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Fig. 12 MSE of the adjusted death rates obtained from the SGM

2.3 Comparing the results from both models
In this subsection, we compare the results of the two stochastic differential
equations models applied in the previous subsections, the GBM and the SGM.

We consider that both models present realistic forecasts with values in the
same order of magnitude and with close MSE, which do not allow us to state,
in a preliminary analysis, that one model is generally better than the other.
Figure 15 illustrates the application of the two stochastic differential equations
models for age 23 and for both sexes (results are presented at the original data
scale).

We selected this age (23 years), because it’s the typical example of the
behaviour of the estimated values, both in terms of adjustment and of fore-
casting trend, which distinguishes the GBM from the SGM. Thus, for most
ages, and for both sexes, the adjustment can be represented by an image sim-
ilar to that of the left side of Figure 15, since the observed death rates present
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Fig. 13 MSE of the LT forecasts (2010 – 2020) obtained from the SGM
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Fig. 14 MSE of the SS forecasts (2010 – 2020) obtained from the SGM
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Fig. 15 Comparison between the GBM and SGM adjustments with LT forecasts for the
age 23 of the female sex (on the left side) and for the male sex (on the right side).

a near constant downward trend. This is the opposite to what happens in the
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male case. Note that the curve estimated by the GBM only follows the vari-
ability of the series at the beginning and at the end of the adjustment period,
whereas the SGM, although not following the observed death rates curve in
the first years, it captures the variability of the series earlier than the GBM.
On the right side of Figure 15, the exception to this behaviours is noticeable.
Sensitively between the ages of 17 and 37 a “hump” effect occurs in the male
sex which reflects an increase in mortality in this age group and which causes
the main difference in the pattern of mortality between sexes.

In terms of forecasts, for most ages the GBM underestimates with a
decreasing trend while the SGM overestimates with an increasing trend (as
can be seen in Figure 15).

Although the performance of neither model stands out explicitly from one
another, if we analyse for both models the difference between their respective
MSEs, for each age and by sex, the GBM presents advantages over the SGM.
In fact, both for the adjustment (exception for some ages, mostly between 25
and 49 years old and also after 85 years old, in the male sex) and SS or LT
forecasts, there is a tendency that the error associated to the GBM is lower
than the one associated to the SGM.

Figures 16 to 21 depict the differences, for all ages and for each sex, between
the MSE associated with the GBM and the SGM, i.e, MSEGBM −MSESGM ,
for the adjustments, SS forecasts and LT forecasts. Note that due to the order
of magnitude of the error estimates, which are often very close and small for
several ages, the differences are multiplied by 10000.
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Fig. 16 Difference (×10000) between the MSEs associated with the death rates adjustment
of the GBM and SGM, for each age of the female sex.
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Fig. 17 Difference (×10000) between the MSEs associated with the death rates adjustment
of the GBM and SGM, for each age of the male sex.
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Fig. 18 Difference (×10000) between the MSEs associated with the SS forecasts (from 2010
to 2020) of the GBM and SGM, for each age of the female sex.
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Fig. 19 Difference (×10000) between the MSEs associated with the SS forecasts (from 2010
to 2020) of the GBM and SGM, for each age of the male sex.
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Fig. 20 Difference (×10000) between the MSEs associated with the LT forecasts (from
2010 to 2020) of the GBM and SGM, for each age of the female sex.
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Fig. 21 Difference (×10000) between the MSEs associated with the LT forecasts (from
2010 to 2020) of the GBM and SGM, for each age of the male sex.
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3 Conclusions
We can conclude that the use of stochastic differential equations death rate
models (the GBM and SGM) replicates almost exactly the decreasing death
rate phenomenon observed so far for the Portuguese population. Furthermore,
both models present realistic forecasts with values in the same order of magni-
tude and with relatively small MSE, which did not allowing us to state which
model was generally better.

However, in Section 2.3, where the models were compared to one another,
we could state that the GBM outperforms the SGM in most of the age groups
for both sexes, considering the difference in the MSE between the models in
both SS and LT forecasts. Even when only considering the adjustment, the
GBM in most age groups outperforms the SGM, only in individuals aged 80
or more years for both sexes, the SGM outperforms the GBM.

Without surprise, the SS forecasts present a smaller forecasting error when
compared to the LT forecasts. This is of course logical since in the case of SS
forecasts we update t and the last observed value, as well as the parameter
estimates, each time we progress one step further in time. We mean, the fore-
casts will be more accurate, given the added information available and used
than those of the LT forecasts.

In summary, our initial goal was to explain the evolutionary trend of
mortality in the Portuguese population and we verify that the results of the
application of this methodology are quite good. However, we accept that there
may be one or more variables, we dont know, that are likely to affect the prob-
ability of death in a group of individuals (of the same or different ages and
of the same or different sexes) in a certain period of time. We believe that
improvement of this type of model involves extracting more information from
the data of the populations under study, making parameter estimation more
flexible and thus improving its overall performance.
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