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Conformal prediction of option prices

João A. Bastos*

Lisbon School of Economics & Management (ISEG) and REM

Universidade de Lisboa

Abstract

The uncertainty associated with option price predictions has largely been overlooked
in the literature. This paper aims to fill this gap by quantifying such uncertainty us-
ing conformal prediction. Conformal prediction is a model-agnostic procedure that
constructs prediction intervals, ensuring valid coverage in finite samples without
relying on distributional assumptions. Through the simulation of synthetic option
prices, we find that conformal prediction generates prediction intervals for gradient
boosting machines with an empirical coverage close to the nominal level. Con-
versely, non-conformal prediction intervals exhibit empirical coverage levels that
fall short of the nominal target. In other words, they fail to contain the actual op-
tion price more frequently than expected for a given coverage level. As anticipated,
we also observe a decrease in the width of prediction intervals as the size of the
training data increases. However, we uncover significant variations in the width of
these intervals across different options. Specifically, out-of-the-money options and
those with a short time-to-maturity exhibit relatively wider prediction intervals.
Then, we perform an empirical study using American call and put options on in-
dividual stocks. We find that the empirical results replicate those obtained in the
simulation experiment.

Keywords: Conformal prediction; Machine learning; Option price; Quantile regression;
American options.

1 Introduction

The use of machine learning methods for pricing and hedging options has become well-
established in the finance literature, with roots in the influential works of Malliaris and
Salchenberger (1993) and Hutchinson et al. (1994). These methods excel at estimating
complex and nonlinear relationships, making them valuable tools for pricing options, even
when closed-form pricing formulas are available. Among the various machine learning
algorithms, the feed-forward neural network trained with back-propagation (Rumelhart
et al., 1986) stands out as the most commonly used model for predicting option prices
(e.g., Anders et al., 1998; Garcia and Gençay, 2000; Andreou et al., 2010). Nonetheless,
alternative machine learning models, such as support vector machines (Vapnik, 1995),
have demonstrated their competitiveness relative to neural networks in pricing options

*ISEG, Rua do Quelhas 6, 1200-781 Lisboa, Portugal. E-mail address: jbastos@iseg.ulisboa.pt, Phone:
+351 213 925 800.
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(Wang, 2011; Park et al, 2014). Moreover, a recent study by Ivaşcu (2021) compared
various machine learning algorithms for predicting option prices, revealing that tree-
based ensembles, such as random forests (Breiman, 2001) and gradient boosting machines
(Friedman, 2001), outperformed neural networks.1

From a risk management perspective, it is surprising that the literature on option
pricing with machine learning has primarily focused on point predictions, neglecting the
quantification of the associated uncertainty. This oversight is particularly significant, as
the findings of this paper reveal substantial variations in this uncertainty across different
option contracts. Moreover, when the option price is known, prediction intervals can
serve as a valuable speculative tool. If the option price falls below the prediction interval,
it suggests potential undervaluation, indicating a possible long position. Conversely, if
the option price exceeds the prediction interval, it may indicate overvaluation, suggesting
a potential short position.

In this paper, we address the problem of quantifying uncertainty in option price pre-
dictions using conformal prediction (Papadopoulos et al., 2002; Vovk et al., 2005, 2009;
Lei et al., 2013; Lei and Wasserman, 2014). To achieve this objective, we employ confor-
mal quantile regression (Romano et al., 2019), a technique for constructing statistically
rigorous prediction intervals for machine learning models. In contrast to other techniques,
conformal quantile regression enables the creation of flexible and adaptive intervals ca-
pable of capturing the varying levels of uncertainty associated with different option con-
tracts. To the best of our knowledge, this is the first application of conformal prediction
in the field of asset pricing. The predictive model is a gradient boosting machine based
on decision trees. Preliminary results showed that this model predicts more accurately
option prices in our dataset than feed-forward neural networks. This is not surprising
since tree-based model still outperform neural networks on many problems with tabular
data (Grinsztajn et al., 2022).

We conduct a comparison between the properties of intervals derived from conformal
quantile regressions and those obtained from normal (or non-conformal) quantile regres-
sions. Through simulations and a real dataset of American options on individual stocks,
we show that conformalized quantile models consistently provide prediction intervals with
coverage levels near the nominal target. In contrast, non-conformalized quantile models
give prediction intervals that fall short in covering the test data. In other words, these
intervals fail to contain the actual option price more frequently than expected for a given
coverage level. We further note significant variations in the uncertainty associated with
the predicted values. Specifically, we find wider prediction intervals for out-of-the-money
options.2 Indeed, pricing out-of-the-money options can be more challenging than pric-
ing in-the-money options since the former have little intrinsic value and tend to lose
value rapidly as they approach their expiration date. Similarly, we find large intervals
for options with a short time-to-maturity, which are susceptible to pin risk (Golez and
Jackwerth, 2012). These findings shed light on the neglected variation in the uncertainty

1Naturally, machine learning methods find various other applications in finance, with one of the most
common being stock return prediction. For recent studies on this topic, see Ribeiro et al (2021), Kanwal
et al (2022), Chaudhari and Thakkar (2023), Gülmez (2023), Nakayama et al. (2023), Deng et al. (2024).

2Out-of-the-money options have minimal intrinsic value, specifically, call options with an underlying
asset price lower than the strike price or put options with an underlying asset price higher than the
strike price. Conversely, in-the-money options hold intrinsic value and can be immediately exercised –
call options when the underlying asset price exceeds the strike price or put options when the underlying
asset price is lower than the strike price. At-the-money options possess a strike price that closely aligns
with the price of the underlying asset.
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associated with option price predictions given by machine learning models.
The remainder of this paper is structured as follows. The next section introduces

some potential approaches for measuring the uncertainty of option price predictions and
their limitations. In Section 3, the conformal prediction framework for option prices
is detailed. Section 4 presents the results derived from simulated data, while Section 5
describes an empirical application focused on American options associated with individual
stocks. Finally, Section 6 summarizes the key findings from the study.

2 Preliminaries

The problem at hand involves a set of n option prices {Yi}ni=1 and corresponding ex-
planatory variables {Xi}ni=1, such as spot price, strike price, and time-to-maturity. Our
objective is to construct a prediction interval C(Xn+1) ⊆ R for a new option contract
with known characteristics Xn+1 but an unknown price Yn+1. Given a significance level
α, the goal is to ensure that the prediction interval has high probability of containing the
unknown price

Pr(Yn+1 ∈ C(Xn+1)) ≥ 1− α, (1)

where 1−α represents the desired nominal coverage. Ideally, this interval should possess
favorable finite-sample properties and be independent of the joint distribution PX,Y over
which the probability in Equation (1) is calculated.

For European options, a straightforward approach to address this problem is by as-
suming a data generating process for the underlying asset price. By generating n asset
paths and calculating the option payoffs at maturity for each path, we can compute the
mean payoff at maturity ȲT and its standard deviation s(YT ). Subsequently, a prediction
interval for the option value at maturity can be constructed as:[

ȲT − zα
2

s(YT )√
n

, ȲT + z1−α
2

s(YT )√
n

]
(2)

where zα
2
and z1−α

2
represent the α

2
and 1 − α

2
quantiles of the payoff distribution at

maturity. Finally, by discounting the boundaries of this interval, a prediction interval for
the option before expiration can be obtained. It is important to note that this approach
heavily relies on the assumption made regarding the data generating process. If this
assumption is incorrect, the resulting intervals will not provide valid coverage. Given the
typically unknown dynamics of the underlying asset price, an alternative approach could
involve bootstrapping the training set and reestimating the option price on each sample
(see, e.g., Tibshirani, 1996). However, this approach would yield prediction intervals with
a constant width, which is not realistic and fails to capture changing market conditions.

A different approach was proposed by Healy et al. (2003). They introduced a two-step
strategy that involved training a neural network to predict option prices and calculate the
squared residuals. Subsequently, they trained a second network with two outputs: the
first output aimed to predict option prices, while the second output targeted the squared
residuals derived from the first network predictions. This approach aimed to provide
both a point prediction and a measure of uncertainty for the price of a new option, which
could then be used to construct prediction intervals. However, this approach poses two
main issues. First, employing two output units in the network results in a doubling
of the connections between the last hidden layer and the output layer. Consequently,
this increased complexity requires a larger amount of data to effectively train the model.
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Second, there are no theoretical guarantees that the resulting prediction intervals have
valid coverage, meaning their reliability is not assured.

A strategy that avoids increasing the size of the model is to predict the conditional
quantiles of option prices. Let F (Y |X) denote the conditional distribution function of
option prices Y given a set of explanatory variables X. The conditional quantile function
is defined as

qα(X) = inf {Y ∈ R : F (Y |X) ≥ α} . (3)

By training two models to learn the quantile functions qα
2
(X) and q1−α

2
(X), we can

obtain a conditional prediction interval for Yn+1 with a nominal coverage level of 1− α,
given by [

qα
2
(Xn+1), q1−α

2
(Xn+1)

]
. (4)

Regarding the functional form for qα(X) we could consider the conventional quantile
regression of Koenker and Bassett (1978). But this would impose a linear association
between the conditional quantiles of the target variable and the predictors, and option
prices are non-linear on their explanatory variables. Fortunately, many non-linear ma-
chine learning algorithms can be trained to learn quantiles instead of the mean response.
The key is to minimize a “pinball loss” function rather than a quadratic loss function.

Unfortunately, intervals estimated using “plain” quantile machine learning models do
not guarantee valid coverage in most circumstances (Takeuchi et al., 2006; Meinshausen,
2006; Steinwart and Christmann, 2011). Simulation experiments and empirical results
below show that this approach leads to intervals that seriously undercover the observed
option prices, resulting in a higher frequency of missing the actual option prices than
expected for a given nominal coverage level. To address this miscoverage problem, an
effective solution is the use of conformal prediction. Conformal prediction is a model-
agnostic technique that constructs prediction intervals without relying on distributional
assumptions, ensuring valid coverage in finite samples (Papadopoulos et al., 2002; Vovk et
al., 2005, 2009; Lei et al., 2013; Lei and Wasserman, 2014). The finite-sample validity of
conformal prediction is particularly beneficial for thinly traded options and newly created
contracts where limited data points are available.

Early conformal regression approaches suffer from the limitation of producing inter-
vals with constant or weakly varying lengths across the regressor space. This restrictive-
ness is problematic, as the findings in the paper highlight significant variations in model
uncertainty among different option contracts. Indeed, the empirical analysis reveals rel-
ative prediction intervals spanning from a few percent to a staggering thirty percent.
To overcome this limitation, Romano et al. (2019) introduced the concept of conformal-
ized quantile regression. This procedure enables the derivation of confidence intervals
with accurate coverage in finite samples from any quantile regression model. Notably,
the only assumption required for this procedure is that the observations {(Xi, Yi)}n+1

i=1

are exchangeable. By adopting conformalized quantile regression, the limitations of early
conformal regression approaches can be mitigated, allowing for more flexible and adaptive
intervals that capture the varying levels of uncertainty across different option contracts.

3 Methodology

Let Y represent an option price, and X denote a vector of explanatory variables. We con-
sider a sample of n options, denoted as {(Xi, Yi)}ni=1, which are used to train a machine
learning model. Additionally, we have a new option contract with known characteristics
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Xn+1 but an unknown price Yn+1. We assume that all observations in the dataset, includ-
ing the new option, {(Xi, Yi)}n+1

i=1 , are exchangeable and drawn from a joint distribution
PX,Y . This assumption holds automatically if the (Xi, Yi) are independent and identi-
cally distributed. Our objective is to construct a prediction interval C(Xn+1) ⊆ R that
satisfies Equation (1) for any desired coverage level 1 − α. Moreover, this relationship
should hold for any joint distribution PX,Y . The following discussion is based on the
work of Romano et al. (2019).

3.1 Split conformal prediction

A simple approach for constructing conformal intervals is the “split conformal prediction”
method (Papadopoulos et al., 2002). This method involves splitting the training data into
two subsets: S1 = {(Xi, Yi) : i ∈ I1} for estimation, and S2 = {(Xi, Yi) : i ∈ I2} as the
calibration set for obtaining “conformity scores”, where I represents a set of observation
indices. A regression model Y = f(X) is then trained on S1, where any regression
function can be used. Next, conformity scores are computed for each observation in the
calibration set using the absolute residuals of the trained model f̂(X):

ε̂i = |Yi − f̂(Xi)| ∀ i ∈ I2. (5)

For a given significance level α, the quantile q1−α(I2) is calculated from the empirical
distribution of the conformity scores,

q1−α(I2) =
(n2 + 1)(1− α)

n2

th-quantile of ε̂i : i ∈ I2, (6)

where n2 is the number of observations in the calibration set. Finally, the prediction
interval for the unknown price Yn+1 of option Xn+1 is constructed as:

C(Xn+1) =
[
f̂(Xn+1)− q1−α(I2), f̂(Xn+1) + q1−α(I2)

]
. (7)

One limitation of the split conformal prediction approach is that it produces con-
stant prediction intervals, which fails to capture the varying width of intervals observed
empirically for option prices. However, the split conformal prediction method can be
extended to address this limitation by introducing a locally adaptive approach known as
“locally adaptive conformal prediction” (Papadopoulos et al., 2008). This method scales
the absolute residuals ε̂i by their dispersion at Xi, allowing for non-constant prediction
intervals. But this procedure has several limitations, as explained in Romano et al. (2019,
pp. 8).

3.2 Conformal quantile prediction

In conformal quantile prediction, the training dataset is also divided into two subsets: one
for estimation and the other for calibration to obtain conformity scores. This procedure
uses any regression model for quantiles. Initially, two regression models for quantiles,
namely q̂α

2
(X) and q̂1−α

2
(X), are trained using subset S1 for a given coverage level of

1− α. Subsequently, the conformity scores are calculated using:

ε̂i = max
[
q̂α

2
(Xi)− Yi, Yi − q̂1−α

2
(Xi)

]
, ∀ i ∈ I2. (8)
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Next, Equation (6) is employed to compute the q1−α(I2) quantile of the empirical distri-
bution of these conformity scores. Finally, the conformalized prediction interval for Yn+1

is given by:

C(Xn+1) =
[
q̂α

2
(Xn+1)− q1−α(I2), q̂1−α

2
(Xn+1) + q1−α(I2)

]
. (9)

Theorem (Romano et al., 2019): If (Xi, Yi)
n+1
i=1 are drawn interchangeably, the prediction

interval C(Xn+1) given in Equation (9) satisfies:

Pr(Yn+1 ∈ C(Xn+1)) ≥ 1− α,

If the conformity scores {ε̂i : i ∈ I2} are almost surely distinct, then C(Xn+1) is nearly
perfectly calibrated, with the following relationship:

Pr(Yn+1 ∈ C(Xn+1)) ≤ 1− α +
1

1 + n2

.

3.3 Machine learning model for quantiles

To obtain the conformalized prediction intervals described in Equation (9), a regression
model for quantiles is required. Here, we employ a modified version of a “gradient boost-
ing machine” (Friedman, 2001) as the quantile regression model. The gradient boosting
machine combines multiple base models to form a robust “committee” of models. Typ-
ically, decision trees (Breiman et al., 1983; Quinlan, 1986) are used as the base models.
Decision trees consist of a series of if-then-else conditions based on the features of the
observations, which ultimately lead to a prediction. A decision tree can contain numerous
branches, each with multiple sequential tests on the features. The prediction Ŷ of the
gradient boosting machine is obtained by summing the predictions of a set of K decision
trees {fk(X)}Kk=1:

Ŷ =
K∑
k=1

fk(X). (10)

The initial tree, f1(X), is a standard decision tree trained on the original data. The sub-
sequent decision trees, {fk(X)}Kk=2, are incrementally added to the committee. However,
each new tree is trained on the errors produced by the trees already present in the com-
mittee. This process aims to rectify the errors made by the existing committee of trees.
During each iteration, the tree to be added is the one that minimizes the regularized loss
function.

n∑
i=1

L
(
Yi, Ŷ

(k−1)
i + fk(Xi)

)
+ γT +

1

2
λ||wk||2. (11)

When aiming to predict the mean response, the loss L(·) is typically defined as the
squared-error loss:

L
(
Yi, Ŷ

(k−1)
i + fk(Xi)

)
=
(
Yi − Ŷ

(k−1)
i − fk(Xi)

)2
. (12)

However, in the context of predicting quantiles, we use a different loss known as the
“pinball loss”, which is defined as follows:

L
(
Yi, Ŷ

(k−1)
i + fk(Xi)

)
=

α
(
Yi − Ŷ

(k−1)
i − fk(Xi)

)
, if Yi ≥ Ŷ

(k−1)
i + fk(Xi)

(1− α)
(
Ŷ

(k−1)
i + fk(Xi)− Yi

)
, otherwise

(13)
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The last two terms in Equation (11) are regularization terms that aim to penalize complex
trees, thereby preventing the committee from overfitting the training data. The parameter
γ serves as a penalty on the number of terminal nodes in a tree, denoted by T , while
λ serves as a penalty on the magnitude of the tree weights wk. To add new trees,
a gradient descent algorithm is used to minimize the loss function. There are several
efficient implementation of gradient boosting. In this paper, we use the “Light Gradient
Boosting Machine”, or LightGBM (Ke et al., 2017). LightGBM is known for its speed
and efficiency, surpassing the popular “Extreme Gradient Boosting” (XGBoost) (Chen
and Guestrin, 2016) in terms of training time. Moreover, both implementations exhibit
comparable accuracy.3 LightGBM has a range of “hyperparameters” – parameters that
are not learned during the training process and need to be optimized.

Figure 1: Flowchart for conformal quantile prediction. The significance level of the
confidence intervals is 1− α.

Figure 1 shows a flowchart summarizing the procedure for calculating conformal pre-
diction intervals. Initially, the data are partitioned into three distinct datasets. The
training data serves as the basis for training the models with pinball loss functions. Sub-
sequently, the calibration data is used to predict quantiles and derive conformity scores.
The properties of the conformal prediction intervals are evaluated using an independent
test dataset.

4 Simulation experiments

With Monte Carlo simulations we created a controlled environment to compare the prop-
erties of conformalized quantile regression with those of the non-conformalized counter-
part. The Monte Carlo experiments focused on simulating call options on stocks and
assuming that their prices are determined by the Black-Scholes formula for pricing Euro-
pean options. It was assumed that the underlying asset does not pay dividends. In this
particular scenario, where there are no ex-dividend events during the life of the option, it
is always optimal to exercise the option at expiry. As a result, the Black-Scholes formula

3source: https://lightgbm.readthedocs.io/en/latest/Experiments.html
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can be used to value American call options, and the simulation results are applicable to
both European and American call options.

Variable Simulated process
Spot price S ∼ U(500, 1500)
Volatility σ ∼ U(0.1, 1)
Time-to-maturity τ ∼ U(14/252, 2)
Interest rate r ∼ U(0.001, 0.05)
Strike price K ∼ S/z, z ∼ N(1, 0.1)

Table 1: Statistical distributions for generating Black-Scholes prices of non-dividend pay-
ing call options. U(a, b) is the uniform distribution bounded by a and b, and N(µ, s2) is
the normal distribution with mean µ and variance s2.

The simulation data for the option parameters are generated according to the pro-
cesses outlined in Table 1. The data generation process is the following. A specified
number of sets {S, σ, τ, r} is generated based on the processes described in Table 1. For
each set, four strike prices K are generated using the process specified in the last row of
Table 1 – that is, the strike prices are constrained to be in the vicinity of the spot price S.
For each set {S, σ, τ, r,K}, the call prices CBS are calculated using the Black-Scholes for-
mula. To investigate the finite-sample properties of the procedures under various sample
sizes, datasets of four different sizes were generated: 20,000, 50,000, 100,000, and 200,000
observations.

In all simulation experiments and the empirical application, a random set with 20%
of the observations is used as validation data to derive prediction intervals. In the case
of conformal models, an additional 20% of the observations are randomly held out as
calibration data. As a result, non-conformal models are trained using 80% of the ob-
servations, while conformal models are trained using only 60%. One might argue that
non-conformal models, being trained on more data, would yield more accurate point pre-
dictions. This is indeed true, especially for small datasets. However, our primary focus
is to obtain prediction intervals with valid coverage, even if it requires sacrificing some
training data to achieve this goal. It is worth noting that when a machine learning model
is deployed in a production environment, it is usually trained using all available data
before deployment.

We make the assumption that the homogeneity of degree one in the spot and strike
prices of the Black-Scholes formula partially holds, regardless of the true pricing model.
Therefore, both spot and option prices are scaled by the strike price – the machine learning
models are trained to learn the relationship between CBS/K and the inputs {S/K, σ, τ, r}.
After training, the predicted prices and intervals can be recovered in monetary units by
multiplying them by the strike price. To determine the optimal hyperparameters for the
models, a grid-search approach was performed. The objective was to minimize the mean
absolute error in the validation data. The following hyperparameters were included in
the grid-search:

1. Number of decision trees in the ensemble: The initial trees added to the commit-
tee typically provide significant improvements in out-of-sample accuracy, but the
marginal gains decrease as more trees are added.

2. Maximum depth of the decision trees: Using very large trees may lead to overfit-
ting of the training data and may not necessarily result in the best out-of-sample
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accuracy.

3. Maximum number of leaves in one tree: A large number of leaves in a tree may also
lead to overfitting and may not provide the best out-of-sample accuracy.

4. Learning rate: This parameter controls the step size in the gradient descent algo-
rithm and can affect the convergence and overall performance of the model.

Hyperparameter Search space
Number of trees in the ensemble {100, 500, 1000, 2500, 5000}
Maximum number of leaves in one tree {32, 64, 128, 256}
Maximum tree depth {8, 16, 32, 64}
Learning rate {0.005, 0.01, 0.05, 0.1, 0.5}

Table 2: Hyperparameters’ search space for the Light Gradient Boosting Machine.

By performing a grid-search over these hyperparameters, the optimal values were
determined, resulting in the models with the lowest mean absolute error on the validation
data. The hyperparameters’ search space is shown in Table 2.

Figure 2: Conformal prediction intervals against option moneyness (S/K) for the simu-
lated datasets with 20,000 and 200,000 observations. The bars in gray represent the cases
where the prediction interval failed to cover the actual value. The dots represent actual
option prices missed by the intervals. The nominal coverage is 0.9.

Once the models are trained, prediction intervals can be calculated for the test data.
Figure 2 provides an illustration of the conformal prediction intervals for a randomly
selected sample of 200 observations plotted against the option moneyness (S/K).4 The
left plot corresponds to the dataset with 20,000 observations, while the right plot corre-
sponds to the larger dataset with 200,000 observations. The nominal coverage of these

4Conformal prediction intervals were obtained with the MAPIE (Model Agnostic Prediction Interval
Estimator) package: https://mapie.readthedocs.io/en/latest/index.html.
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intervals is set at 0.90, meaning that if the conformal intervals are valid, they should
encompass approximately 90% of the actual option prices. In the plots, the bars in gray
represent the cases where the prediction interval failed to cover the actual value. The
dots represent the option prices missed by the intervals. The adaptability of interval
widths to model uncertainty is clearly demonstrated by the observed large variations in
the size of the intervals. This variability reflects the level of uncertainty associated with
the model’s predictions – the intervals widen or narrow depending on the degree of pre-
diction uncertainty. The intervals for the larger dataset with 200,000 observations are
typically smaller. This indicates that with larger training datasets, the machine learning
models gain more “confidence” in their predictions, leading to narrower intervals.

Figure 3: Distributions of relative interval widths (in %) for the simulated data and
different sample sizes. The nominal coverage is 0.9.

Figure 3 displays the distributions of relative interval widths – expressed as a per-
centage – for the four simulated datasets with varying sample sizes. These distributions
exhibit an asymmetric shape with positive skewness. As anticipated, the relative interval
widths tend to concentrate at smaller values as the sample size increases, indicating that
the models improve their ability to accurately map the input variables to option prices.

4.1 Empirical coverages

To evaluate the validity of the coverage guarantees provided by the models, we can
calculate the empirical coverage, which is defined as the proportion of actual option
prices that fall within the prediction interval:

1

ntest

∑
i∈Itest

1(Yi ∈ C(Xi)). (14)
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Here, ntest represents the number of observations in the test set, and Itest is the set of
indices corresponding to this set. The indicator function 1(Yi ∈ C(Xi)) is equal to 1
if the actual option price Yi falls within the prediction interval C(Xi), and 0 otherwise.
Additionally, it is valuable to examine the overall width of the intervals. Since the
distributions of relative interval widths in Figure 3 exhibit significant skewness, we report
the median relative interval width over the test set. This provides an overall measure of
interval widths that is less affected by extreme values and captures the typical range of
interval widths observed in the data. All the reported results in the following analysis
correspond to a nominal coverage level of 0.9.

Empirical coverage Relative width
Dataset size CQR NQR CQR NQR
20,000 0.91 0.61 7.9% 2.4%
50,000 0.90 0.66 5.9% 2.1%
100,000 0.89 0.70 4.3% 1.8%
200,000 0.90 0.74 2.9% 1.4%

Table 3: Empirical coverages and median relative widths of the prediction intervals given
by the conformal quantile regressions (CQR) and the non-conformal quantile regressions
(NQR) for the simulated data. Nominal coverage level is 0.9.

Table 3 reports the empirical coverage of the prediction intervals for the simulated
test data, as well as the median relative interval widths. Considering Equation (9), these
are given by:

median

([
q̂1−α

2
(X) + q1−α(I2)

]
−
[
q̂α

2
(X)− q1−α(I2)

]
Y

)
. (15)

CQR refers to the intervals derived from the conformal machine learning models for quan-
tiles, while NQR refers to those obtained using plain (or non-conformal) machine learning
models for quantiles. For the conformalized quantile regressions (CQR), regardless of the
sample size, the empirical coverage in the test set closely aligns with the nominal level
of 0.9. This indicates that the conformal models provide reliable finite-sample coverage
guarantees. In contrast, the non-conformalized quantile regressions (NQR) severely un-
dercover the actual values, especially for smaller sample sizes. However, as the sample
size increases, the empirical coverage improves, although it still deviates from the nominal
level. This suggests that the non-conformal models struggle to provide accurate coverage
guarantees, even when trained on large datasets.

Regarding the median relative interval width, it is expected that the non-conformal
models yield narrower intervals compared to the conformal models. This is because the
non-conformal models tend to underestimate the uncertainty. On the other hand, the
conformal models exhibit wider intervals, reflecting their ability to capture the inherent
uncertainty in estimating option prices. Furthermore, the widths of both conformal
and non-conformal models decrease as the sample size increases – with larger training
datasets, the machine learning models gain more confidence in their predictions, resulting
in narrower prediction intervals.
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4.2 Conditional coverage

The marginal coverage guarantee expressed in Equation (1) should be distinguished from
the conditional coverage guarantee:

Pr (Yn+1 ∈ C(Xn+1)|Xn+1 = x)) ≥ 1− α, (16)

that should be satisfied for any x. However, achieving this conditional coverage guaran-
tee is impossible without making strong assumptions about the joint distribution PX,Y

(Barber et al., 2021). To obtain valid conditional coverages across different regions of the
regressor space, it would be necessary to train individual models on data specific to each
of these regions and conformalize the intervals accordingly. Nonetheless, it remains an
interesting empirical question to explore the behavior of conditional coverages in specific
regions of the regressor space when the model is trained on the entire dataset. Indeed,
the data may be too limited to effectively train individual models on subsets that cover
small regions of a regressor domain. This is the case of thinly traded options or newly
created contracts for which few trades were recorded.

Moneyness
Empirical coverage Relative width

Dataset size OTM ATM ITM OTM ATM ITM
20,000 0.93 0.93 0.88 12% 7% 6%
50,000 0.91 0.92 0.87 8% 5% 5%
100,000 0.90 0.93 0.86 6% 4% 3%
200,000 0.91 0.93 0.87 4% 3% 2%

Time-to-maturity
Empirical coverage Relative width

Dataset size short medium long short medium long
20,000 0.93 0.89 0.91 29% 16% 7%
50,000 0.88 0.92 0.90 21% 14% 5%
100,000 0.86 0.90 0.89 15% 10% 4%
200,000 0.88 0.90 0.90 9% 5% 3%

Table 4: Conditional coverages and median relative widths of the conformal predic-
tion intervals for different levels of moneyness (upper panel) and time-to-maturity (lower
panel), obtained for the simulated call options. The levels of moneyness (M) are defined
as: out-of-the-money (OTM), M < 0.98; at-the-money (ATM), 0.98 ≤ M < 1.02; and
in-the-money (ITM), M ≥ 1.02. The different levels of time-to-maturity (τ) are defined
as: short-term, τ < 30 days; medium-term, 30 ≤ τ < 60 days; and long-term, τ ≥ 60
days. The nominal coverage level is 0.9.

The upper panel of Table 4 presents the conditional coverages and median relative
widths for different levels of moneyness obtained from the conformal models. Moneyness
is defined as the ratio of the underlying asset price and the option’s strike price (S/K) and
measures the intrinsic value of an option. In-the-money call options have a moneyness
exceeding 1, while in-the-money put options have a moneyness below 1. Conversely,
out-of-the-money call options possess a moneyness less than 1, and out-of-the-money put
options hold a moneyness greater than 1. At-the-money options exhibit a moneyness
close to 1. To calculate the conditional coverages, the test data was divided into three
bins based on moneyness (M): out-of-the-money (M < 0.98), at-the-money (0.98 ≤ M <
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1.02), and in-the-money (M ≥ 1.02). The conditional coverages measure the proportion
of prices falling within the prediction interval for each moneyness bin. The conditional
widths represent the median relative widths within each moneyness bin. Notably, the
conditional coverages align rather closely with the expected nominal level. Regarding
the conditional interval widths, we observe again that the relative intervals decrease as
the number of observations increases. The lower panel of Table 4 reports the conditional
coverages and median relative widths of the conformal prediction intervals for different
levels of time-to-maturity (τ): short-term (τ < 30 days), medium-term (30 ≤ τ < 60
days), and long-term (τ ≥ 60 days). The conditional coverages represent the proportion
of prices falling within the prediction interval for each maturity bin, while the conditional
widths denote the median relative widths within each maturity bin. Once again, the
conditional coverages closely align with the expected nominal level and, as the number
of observations increases, the relative width of the interval decreases.

5 Empirical application

5.1 Data

The dataset used in this study comprises information on American option contracts ob-
tained through the Yahoo Finance API5. The dataset includes data for both call and put
contracts. The underlying assets are stocks of eight large companies: Amazon, AMD,
Boeing, Disney, Meta, Netflix, PayPal, and Salesforce. The data collection period for the
option prices spans from November 11, 2020, to February 12, 2021. Each option price
was matched with the closest trading price of the corresponding underlying stock. None
of these companies had dividend events during the options’ lifespan at the time of data
collection. Consequently, for call contracts, the empirical results can be directly com-
pared to the findings from the simulation exercise. We follow Hutchinson et al. (1994)
and use the 3-month Treasury Bill rate from the Federal Reserve Bank of St. Louis as a
measure of the short-term interest rate. Throughout the period under examination, this
rate remained at historically low levels, fluctuating between 0.04% and 0.16%.

The volatility of the underlying assets was determined using the implied volatility
obtained from the binomial options pricing model (Cox et al., 1979). To exclude highly
illiquid contracts, the following criteria were applied. Observations with a maturity of
fewer than 10 trading days until expiry were removed. Additionally, contracts that were
deep in-the-money or deep out-of-the-money (S/K < 0.5 or S/K > 1.5) were also ex-
cluded from the analysis.

Table 5 presents summary statistics for the calls and puts datasets, including the
number of observations, mean spot price, mean strike price, mean option price, mean
annual implied volatility, and mean time-to-maturity in years. All prices are denominated
in US dollars. The number of observations varies across the companies, with Amazon
having the highest number and PayPal having the lowest. The mean annual implied
volatility ranges from 0.38 to 0.54 across the companies. The mean time-to-maturity
ranges from 0.15 (approximately 38 trading days) to 0.27 (approximately 68 trading
days). For the call options, the mean spot prices are lower than the mean strike prices,
indicating that these options are typically out-of-the-money. Conversely, for the put
options, the mean spot prices are higher than the mean strike prices, indicating that

5https://pypi.org/project/yfinance/

13



Call options
Company Count Spot price Strike price Option price Maturity Volatility
Amazon 14676 3215 3498 96.7 0.18 0.38
AMD 10477 90 100 6.0 0.26 0.54
Boeing 9278 212 246 10.9 0.29 0.52
Disney 6583 168 182 8.5 0.29 0.40
Meta 9941 271 304 11.3 0.27 0.41
Netflix 7061 521 568 19.9 0.19 0.43
PayPal 5399 234 251 13.3 0.26 0.45
Salesforce 6575 230 261 8.9 0.29 0.41

Put options
Company Count Spot price Strike price Option price Maturity Volatility
Amazon 11537 3225 2994 74.5 0.15 0.38
AMD 6700 90 84 5.1 0.22 0.53
Boeing 6050 211 192 10.4 0.24 0.53
Disney 4380 166 151 4.9 0.24 0.40
Meta 7692 271 245 9.5 0.25 0.43
Netflix 5820 524 476 14.4 0.18 0.43
PayPal 3644 234 211 7.3 0.23 0.45
Salesforce 4367 230 211 8.4 0.25 0.43

Table 5: Summary statistics of the dataset: number of observations; mean spot price;
mean strike price; mean option price; mean time-to-maturity (years); and mean annual
implied volatility. Prices are in US dollars.

these options are also typically out-of-the-money.
Figure 4 displays the conformal prediction intervals plotted against moneyness for

a random sample of 200 options on Amazon stocks. The left plot corresponds to call
options, while the right plot corresponds to put options. In the plots, the bars in gray
represent the cases where the prediction interval failed to cover the actual value. The
dots represent the option prices missed by the intervals. These instances should account
for approximately 10% of the plotted data points. The adaptability of the prediction
intervals to model uncertainty is evident, as considerable variations in the interval size
can be observed across the moneyness range.

Figure 5 presents the conformal prediction intervals plotted against moneyness for
200 options on PayPal stocks. The models used in this case were trained using a smaller
dataset, consisting of only 3239 calls and 2126 puts. This corresponds to approximately
37% and 30% of the respective numbers of observations for Amazon calls. The confidence
intervals in this case tend to be larger, reflecting the higher uncertainty associated with
a model trained on a smaller number of samples. Nevertheless, it is expected that the
conformal prediction intervals adjust to cover approximately 90% of the option prices,
maintaining the desired nominal coverage level.

5.2 Empirical coverage

To compute the empirical coverage and the median relative widths for the real data, we
need to consider the sampling variability caused by the small number of observations in
certain datasets, such as those for PayPal and Salesforce. While conformal regression
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Figure 4: Conformal prediction intervals against option moneyness (S/K) for a random
sample of 200 options on Amazon stocks. The bars in gray represent the cases where
the prediction interval failed to cover the actual value. The dots represent actual option
prices missed by the intervals. The nominal coverage is 0.9. Left plot: calls; Right plot:
puts.

Figure 5: Conformal prediction intervals against option moneyness (S/K) for a random
sample of 200 options on PayPal stocks. The bars in gray represent the cases where
the prediction interval failed to cover the actual value. The dots represent actual option
prices missed by the intervals. The nominal coverage is 0.9. Left plot: calls; Right plot:
puts.

provides non-asymptotic coverage guarantees, there are two factors contributing to the
finite-sample variability. The first factor arises from the random partitioning of the com-
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plete dataset into training and test sets. This affects both conformal and non-conformal
models. The second factor of finite-sample variability is due to the random selection of
calibration samples from the training data to derive conformity scores. Consequently,
the prediction intervals conditioned on the calibration data become random variables. In
Vovk (2012), it is shown that, given a training dataset (Xi, Yi)

n
i=1 and random calibration

samples
Pr(Yn+1 ∈ C(Xn+1|{(Xi, Yi)}ni=1) ∼ Beta(n+ 1− k, k), (17)

where k = (n + 1)α. Further details and an illustration can be found in Angelopoulos
and Bates (2023). To address this issue, we performed the relevant calculations 100
times using different random splits of the data into training, calibration, and test sets.
By averaging the results, we mitigate the impact of finite-sample variability and obtained
more reliable estimates for the empirical coverage and median relative widths.

Call options
Empirical coverage Relative width
CQR NQR CQR NQR

All companies 0.90 0.69 6% 3%
Amazon 0.90 0.62 9% 4%
AMD 0.90 0.62 10% 5%
Boeing 0.90 0.62 16% 7%
Disney 0.90 0.59 16% 7%
Meta 0.90 0.63 15% 6%
Netflix 0.90 0.60 14% 6%
PayPal 0.90 0.59 15% 7%
Salesforce 0.90 0.60 19% 8%

Put options
Empirical coverage Relative width
CQR NQR CQR NQR

All companies 0.90 0.67 7% 3%
Amazon 0.90 0.61 10% 4%
AMD 0.90 0.60 12% 5%
Boeing 0.90 0.58 15% 6%
Disney 0.90 0.56 22% 9%
Meta 0.90 0.57 15% 6%
Netflix 0.90 0.58 16% 6%
PayPal 0.90 0.54 25% 8%
Salesforce 0.90 0.57 19% 7%

Table 6: Empirical coverage and median relative width of the prediction intervals given
by the conformal quantile regressions (CQR) and the non-conformal quantile regressions
(NQR). Nominal coverage level is 0.9. All figures refer to average values over 100 random
splits of the data into train, calibration and test sets.

Table 6 reports the empirical coverage in the test data for each company and option
type. Additionally, it shows the results obtained when the models are trained and tested
using the full dataset (top row), which comprises 69,990 calls and 50,190 puts. This table
reveals a scenario similar to the one observed in the simulation exercise. Specifically, it
shows that the non-conformal intervals significantly undercover the actual prices, whereas
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the conformalized intervals achieve coverage levels near the nominal level. The median
relative width for the full dataset is the lowest since the models have access to more
information, enabling them to better map the relationship between option prices and
their corresponding characteristics.

5.3 Conditional coverage

The simulation experiment has confirmed that conformal prediction does not provide con-
ditional coverage guarantees. However, despite the absence of exact empirical coverages,
we still aim to examine how the interval widths vary across different regions of the input
space, without training separate models for each region.

Call options
Empirical coverage Relative width
OTM ATM ITM OTM ATM ITM

All companies 0.92 0.92 0.80 9% 3% 4%
Amazon 0.92 0.90 0.75 17% 5% 6%
AMD 0.93 0.92 0.81 18% 7% 6%
Boeing 0.93 0.87 0.78 24% 8% 9%
Disney 0.95 0.88 0.79 32% 10% 7%
Meta 0.93 0.88 0.79 26% 7% 8%
Netflix 0.94 0.89 0.76 24% 7% 8%
PayPal 0.93 0.91 0.82 29% 10% 10%
Salesforce 0.93 0.89 0.78 29% 9% 9%

Put options
Empirical coverage Relative width
ITM ATM OTM ITM ATM OTM

All companies 0.79 0.88 0.92 5% 4% 8%
Amazon 0.74 0.87 0.92 10% 5% 14%
AMD 0.80 0.89 0.92 8% 7% 16%
Boeing 0.79 0.89 0.93 9% 9% 22%
Disney 0.76 0.86 0.92 12% 11% 30%
Meta 0.77 0.88 0.93 8% 8% 21%
Netflix 0.78 0.85 0.92 11% 8% 20%
PayPal 0.81 0.84 0.92 18% 13% 29%
Salesforce 0.79 0.87 0.93 11% 10% 28%

Table 7: Conditional coverages and median relative widths of the conformal prediction
intervals for different levels of moneyness (M): out-of-the-money (OTM); at-the-money
(ATM); and in-the money (ITM). For call options, the levels of moneyness are OTM:
M < 0.98, ATM: 0.98 ≤ M < 1.02, and ITM: M ≥ 1.02. For put options, the levels
of moneyness are OTM: M ≥ 1.02, ATM: 0.98 ≤ M < 1.02, and ITM: M < 0.98. The
nominal coverage level is 0.9. All figures refer to average values over 100 random splits
of the data into train, calibration and test sets.

Table 7 provides the conditional coverages and median relative widths for different
levels of moneyness (M). Once again, the test data was divided into three bins based on
moneyness (M) to obtain conditional coverages. For call options, the moneyness levels
are categorized as out-of-the-money (M < 0.98), at-the-money (0.98 ≤ M < 1.02), and

17



in-the-money (M ≥ 1.02). For put options, the moneyness levels are categorized as out-of-
the-money (M ≥ 1.02), at-the-money (0.98 ≤ M < 1.02), and in-the-money (M < 0.98).
In-the-money options exhibit greater coverage distortions, tending to undercover actual
prices. Nevertheless, they are closer to the nominal level than those provided by the
non-conformalized models. On the other hand, the interval widths are generally larger
for out-of-the-money options, with some figures approaching 30%.

Call options
Empirical coverage Relative width
short medium long short medium long

All companies 0.95 0.92 0.83 7% 5% 5%
Amazon 0.94 0.91 0.80 10% 7% 9%
AMD 0.95 0.92 0.83 13% 9% 8%
Boeing 0.94 0.92 0.85 26% 18% 12%
Disney 0.94 0.92 0.86 27% 16% 11%
Meta 0.93 0.93 0.85 24% 15% 10%
Netflix 0.93 0.91 0.81 19% 12% 9%
PayPal 0.94 0.92 0.84 20% 15% 13%
Salesforce 0.94 0.92 0.86 26% 19% 14%

Put options
Empirical coverage Relative width
short medium long short medium long

All companies 0.95 0.92 0.79 8% 6% 6%
Amazon 0.94 0.90 0.71 12% 8% 10%
AMD 0.95 0.91 0.81 15% 12% 9%
Boeing 0.95 0.93 0.82 25% 14% 10%
Disney 0.95 0.93 0.82 34% 24% 14%
Meta 0.94 0.94 0.83 24% 16% 10%
Netflix 0.93 0.91 0.79 22% 13% 12%
PayPal 0.94 0.92 0.82 32% 27% 17%
Salesforce 0.95 0.92 0.83 28% 22% 12%

Table 8: Conditional coverages and median relative widths of the conformal prediction
intervals for different levels of time-to-maturity (τ): short-term (τ < 30 days); medium-
term (30 ≤ τ < 60 days); and long-term (τ ≥ 60 days). The nominal coverage level
is 0.9. All figures refer to average values over 100 random splits of the data into train,
calibration and test sets.

Table 8 shows the conditional coverages and median relative widths of the confor-
mal prediction intervals for different levels of time-to-maturity (τ): short-term (τ < 30
days), medium-term (30 ≤ τ < 60 days), and long-term (τ ≥ 60 days). Again, the
values reported in the table are averages derived from 100 random splits of the data into
training, calibration, and test sets. For short-term and medium-term options, the con-
ditional coverages closely align with the nominal level. However, for long-term options,
the conformalized models tend to slightly undercover the data, although not to the same
extent as the non-conformalized models. The intervals are generally larger for short-term
options. This outcome is somewhat expected since option prices vary sharply near the
strike price as the time-to-maturity approaches zero.
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6 Conclusions

This paper presents several findings regarding the uncertainty in option price predic-
tions generated by machine learning models. The instrument to achieve this goal was
conformalized quantile regression, a model-agnostic approach that constructs prediction
intervals, ensuring valid coverage in finite samples without relying on distributional as-
sumptions. Through simulation experiments and an empirical study involving American
call and put options on individual stocks, it was shown that the conformalized models
indeed provide empirical coverages close to the nominal level. The study uncovered signif-
icant variations in the uncertainty associated with the predictions made by the machine
learning models. First, larger relative intervals were observed when the number of train-
ing observations for the models was smaller. This indicates that the procedure adapts the
width of the intervals to ensure empirical coverage close to the nominal level when the
model is less certain about its predictions. Second, it was found that out-of-the-money
options tend to have wider relative prediction intervals. This suggests that the models
are also less confident in predicting prices for these particular options. Finally, wider
prediction intervals were obtained for options with shorter time-to-maturity. Indeed, as
the time-to-maturity approaches zero, option prices tend to exhibit sharper variations
near the strike price.

Naturally, this framework can be used to measure the uncertainty associated with
price predictions for other types of assets. For instance, conformal prediction can be
used to estimate prediction intervals associated with time series forecasts (Gibbs and
Candès, 2021; Xu and Yie, 2021). Therefore, it could be applied in the context of stock
price forecasting where understanding and quantifying uncertainty is essential for making
informed investment decisions.
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