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Abstract

We consider an investment model in which a firm decides to invest in the market, taking into
account its future revenue and the possible occurrence of adverse events that may impact its
reputation. The firm can buy an insurance contract at the investment time to mitigate reputa-
tion risk. The firm decides when to enter the market and the insurance strategy that maximizes
its value. We consider three types of insurance contracts and different premium principles. We
provide analytical conditions for the optimum and study several numerical examples. Results
show that the firm’s optimal strategy depends on the risk size, the firm’s risk aversion, and the
insurance premium.

Keywords: Reputaion Risk, Insurance, Risk Mitigation, Investment Strategies, Real Options.

1 Introduction

Insurance contracts are used by private individuals and companies to protect themselves against
the occurrence of adverse events with a financial impact. Thus, such contracts are particularly
important for firms’ risk management. Earlier justifications for the demand for corporate insurance
were based on the preferences of investors, who were generally risk averse and promoted the demand
for corporate insurance (c.f. [4]). Authors like Main ([24]) and Mayers and Smith ([25]) argue that
risk aversion can only partially justify the purchase of corporate insurance by value-maximizing
firms, mainly in corporations with diffuse ownership. There is a large body of literature discussing
the determinants of corporate insurance demand (see, for instance, [1, 5, 6, 17, 23, 26], and references
therein). Some of the main determinants that drive the demand for corporate insurance are (a)
the existence of high bankruptcy costs, (b) the existence of disputes between stockholders and
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bondholders (the underinvestment problem), or (c) even the comparative advantage in having
insurance companies managing the corporate risk of firms.

Recently, practitioners and academics have started paying great attention to reputation risk
and corporate reputation, although there is no consensus on the definition of reputation risk (cf.
[10, 33]). Consequently, reputation risk has a large scope and includes risks such as operational
losses or scandals that bring the firm’s name into disrepute (see, for instance, [11] and [19]). We
follow [12] and [32], defining reputation risk as the risk of financial losses due to the behavior of
a firm’s stakeholders. Although there is a notorious difficulty in estimating financial losses due to
scandals, literature t proposes empirical methods to estimate such costs (cf. [2, 19]). Some authors
also argue that the consequences of damages to the firm’s reputation can lead to future losses due
to an increase in marketing costs or a decrease in revenues ([29]). The importance of this risk in the
banking and insurance business is highlighted in the Solvency and Basel regulatory frameworks.

Insurance companies have responded to this reality by introducing insurance policies for cor-
porate reputation risk. Insurers present several policies with different characteristics, as discussed
in [13]. These authors also discuss the difficulties in insuring corporate reputation risk, consider-
ing challenges such as risk assessment, loss prediction, or demand uncertainty. In this paper, we
consider the firm’s perspective and analyze the impact of different insurance policies on the firm’s
investment strategy, assuming that events affecting the firm’s reputation may occur. We use the
Real Options Approach (ROA) to analyze the problem. ROA is a valuation technique, such as the
Net Present Value (NPV), first presented by Myers [27]. It gained academic importance after the
publication of the Black and Scholes model ([3])), which provided the theoretical foundations for
ROA. ROA is considered more adequate than NPV to evaluate projects for which cash flows are
uncertain (see, for instance, [9]).

ROA has been used by academics and practitioners to evaluate different firm’s options, such
as the abandonment option (see for instance [15, 16]), the investment option ([7, 8]), the option to
switch between different production modes ([14, 34], among others). In the context of the present
work, it is worth noting that ROA has also been used to define risk management strategies in firms
(see, for instance, [21, 22]). In these two papers, the authors study the optimal time when firms
should take preventive actions to reduce the number of adverse occurrences that will impact their
future cash flows. In addition to the optimal moment, the authors also discuss the investment size
in two different contexts. This is especially important if investing in human training and R&D may
decrease the frequency or the impact of adverse events in the firm’s cash flows. To our knowledge,
there are no papers analyzing how insurance may impact a firm’s investment decision using the
ROA. We find that in most cases, firms benefit from buying insurance, which results in a larger
value function and in small investment thresholds. Insurance is less relevant when the reputation
risk is smaller or when the firm is less risk-averse.

The paper is organized into five sections and four appendices. In Section 2, we introduce the
model, and in Section 3, we present its solution. The insurance optimal strategy is discussed in
Section 4, where we provide the optimality conditions and numerical examples. Conclusions are in
Section 5. In the appendices, we provide the mathematical proofs, auxiliary results, and additional
numerical cases.
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2 The investment model

We consider a monopolistic firm producing a single commodity. The firm’s revenue at time t is
represented by a geometric Brownian motion (gBm) Xt that satisfies the stochastic differential
equation (SDE)

dXt = µXtdt+ σXtdWt, with X0 = x ∈ (0,+∞), (2.1)

where {Wt : t ≥ 0} is a Brownian motion.
There are adverse events that can reduce the firm’s future revenue. The time of occurrence

of such events and their severity in the revenue reduction are random. These negative events
are modeled by means of a compound Poisson process. Let Nt represent the number of negative
occurrences until time t, which is modeled by a Poisson process with intensity λ and N0 = 0.
The processes Nt and Wt are independent and defined in a complete filtered probability space
(Ω,F ,Ft, P ), satisfying the usual right continuity and augmentation by P−negligible sets.

We assume that every adverse occurrence i will decrease the firm’s revenue by a random per-
centage Ui. The sequence {Ui}i∈N is assumed to be independent and identically distributed to the
random variable U , with mean u ∈ (0, 1). The random variable U is independent of both Nt and
Wt. To reduce the effect of each event, the firm has the option of buying an insurance contract,
which allows the firm to transfer part of its losses to the insurance company, h(U) = U −z(U), and
to retain the remaining part z(U), with 0 ≤ z(U) ≤ U . The function z : [0, 1] → [0, 1] characterizes
the insurance contract bought by the firm. The insurance company defines a premium based on
the loss of each event, as follows

P = E(h(U)) + αM(h(U)), (2.2)

where αM(h(U)) is the premium loading, which is defined by the insurance company, with α > 0
and M(h(U)) representing a function of moments of h(U). The premium loading characterizes
the premium principle. In this case, we consider premium principles based on moments. Other
premium principles, based on other measures, may also be considered (see, for instance, [18]).

A firm producing in the time interval [t1, t2] gains an amount given by

∫ t2

t1

e−rt

Xt

(
1−

Nt−τ∑
i=0

(
z(Ui) + f(z(Ui)) + E(h(U)) + αM(h(U))

))
− θ

 dt, (2.3)

where r is the discount rate, θ is the fixed cost of production, and f is a function that represents
how averse the firm is to risk. This function accounts for the cost that the firm may consider to
have on top of the expected financial losses. An example of this is the reputation risk, where this
function can account for unexpected losses associated with scandals.
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If the firm invests at time τ (an Ft−stopping time), its expected value is given by

J(x, τ, z) =

= Ex

[∫ ∞

τ
e−rt

Xt

(
1−

Nt−τ∑
i=0

(
z(Ui) + f(z(Ui)) + E(h(U)) + αM(h(U))

))
− θ

 dt− e−rτK

]

= Ex

[
e−rτEXτ

[∫ ∞

0
e−rt

(
Xt

(
1−

Nt∑
i=0

(
Ui + f(z(Ui)) + αM(h(Ui))

))
− rK − θ

)
dt

]]
,

= Ex

[
e−rτ g̃(Xτ , z)

]
, (2.4)

where K is the investment cost and Ex[·] represents E[·|X0 = x]. Note that the function g̃ can be
written as

g̃(x, z) =Ex

[∫ ∞

0
e−rt

(
Xt

(
1−

Nt∑
i=0

(
Ui + f(z(Ui)) + αM(h(Ui))

))
− rK − θ

)
dt

]

=

∫ ∞

0
e−rt Ex(Xt)

(
1− λt

(
u+ E(f(z(U))) + αM(h(U))

))
dt−

(
K +

θ

r

)
.

(2.5)

We note that the premium paid by the firm to the insurance company also depends on the expected
number of negative occurrences λ.

When f(z) = 0, the firm is risk neutral and assesses its risk only based on the expected value.
In this case, it is never optimal to buy insurance since the expected value of the firm will always
decrease with insurance. Indeed, insurance has a cost which, in this case, will not, on average,
be reflected in a risk reduction to the company. This is due to the fact that the company value
is assessed through the expected value, while the insurance premium must be no less than the
expected value of the risk, otherwise the insurance company will eventually ruin (c.f. [18]).

Before we state the next assumption, we introduce the set of functions Z := {z : [0, 1] →
[0, 1] | z(u) ≤ u} ∩ Ξ, where Ξ may represent a particular class of functions parameterized by a set
of parameters. Two of the most common classes of contracts are given as follows

z1(u) = au, with a ∈ [0, 1]; z2(u) =


u, u < m

m, m ≤ u ≤ l

u− l +m, l < u

, with 0 ≤ m < l ≤ 1. (2.6)

The parameter a will be referred to as the percentage of risk retained, m as the deductible of the
contract, and l as the limit. For the proportional insurance contract, z1, the insurer is liable for
(1 − a) × 100% of the losses. On the other hand, if the firm buys the insurance contract z2, the
insurer is only liable for losses between m× 100% and l× 100% of the firm’s value. The remaining
amount of the losses is covered by the firm. It is worth noting that there are contracts where there
is no deductible, m = 0, or no limit, l = 1.

Let T be the set of all Ft−stopping times. Then, our goal is to find both the optimal time,
τ∗, to start the project and the optimal insurance contract, z∗, to protect the firm against future
occurrences, assuming that its risk preferences are modeled by the function f and that the premium
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paid to the insurer is characterized by αM(h(U)). This is the same as finding the value function
V obtained when we solve the optimal stopping problem:

V (x) = sup
τ∈T , z∈Z

J(x, τ, Z) = sup
τ∈T , z∈Z

E[e−rτ g̃(Xτ , z)] = sup
τ∈T

E[e−rτg(Xτ )], (2.7)

where g(x) = g̃(x, z∗). In order to guarantee that the control problem (2.7) is well-posed, we have
to impose additional assumptions on the parameters. The next assumption guarantees that the
functional J is well-defined and the optimal contract, z∗, exists.

Assumption 2.1. The function f : [0, 1] → R+ is increasing, and both E(f(U)) and M(U) are
finite. Additionally, U , M(·) and f(·) are such that there is z∗ ∈ Z verifying

z∗ = argmin
z∈Z

(E(f(z(U))) + αM(U − z(U)))

and

Ex

[∫ ∞

0
e−rt

∣∣∣∣∣Xt

(
1−

Nt∑
i=0

(
U + f(z∗(Ui)) + αM(Ui − z∗(Ui))

))
− rK − θ

∣∣∣∣∣ dt
]
< ∞,

for all x > 0.

Given that the expected value of Xt is e
µt, the function g is well-defined for all values of x > 0

and z, satisfying Assumption 2.1, when r > µ. After some calculations, the function g̃ can be
represented as

g̃(x, z) =
x

r − µ

(
1− λ

r − µ

(
u+ E(f(z(U))) + αM(U − z(U))

))
−
(
K +

θ

r

)
. (2.8)

Note that the function g(x) = g̃(x, z∗) ≤ 0 for all values of x > 0 if and only if

1− λ

r − µ

(
u+ E(f(z∗(U))) + αM(U − z∗(U))

)
≤ 0,

thus, we only consider the set of parameters for which

r − µ

λ
> max

z∈Z

(
u+ E(f(z(U))) + αM(U − z(U))

)
.

To conclude this section, we note that from Equation (2.5), the firm considers the expected
value of the risk function in the investment decision. This means that if f is a linear function,
i.e., f(u) = νu for ν > 0, the firm makes the investment decision based on the expected loss.
Obviously, if g(x, z∗) = g(x) ≤ 0, for all x > 0, then it is never optimal to invest under this
condition. Therefore, when the premium principle is the expected value, buying insurance will only
be profitable if the premium is lower than the expected losses measured by the firm. The firm will
not transfer the risk when it is cheaper to keep it, i.e., if ν < α. In case ν > α, the reverse situation
occurs. The case ν = α is less interesting because the firm is indifferent to retaining or transferring
the risk. This leads us to the next proposition.
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Proposition 2.1. Consider the expected value premium principle and the risk function f(z) = νz.
Then, the optimal contract is such that

a) if ν > α, then z∗(u) = 0 and h∗(u) = u;

b) if ν < α, then z∗(u) = u and h∗(u) = 0;

We restrict our analysis to the set of parameters for which g(x) > 0 for some x > 0.

3 The model solution

To find the solution of our optimal stopping problem (see [30]), we will study the correspondent
Hamilton-Jacobi-Bellman (HJB, for short) equation, given by

min {rv(x)− Lv(x), v(x)− g(x)} = 0, (3.1)

where L represents the infinitesimal generator of the process Xt. For a function v ∈ C2, with
compact support, the infinitesimal generator is defined by (see [28]):

Lv(x) = lim
t↘0

Ex(v(Xt))− v(x)

t
= µxv′(x) +

σ2x2

2
v′′(x).

Equation (3.1) is a free-boundary problem because one has to solve the ordinary differential equation
(ODE)

rv(x)− Lv(x) = 0 (3.2)

in a domain that is a priori unknown. Thus, solving the HJB equation relies on finding two
important regions: the waiting region, in which the firm should continue waiting until the moment
to start investing, and where Equation (3.2) is active,

C = {x ∈ [0,∞] : v(x) > g(x)},

and the investment region, in which the firm should make the decision of investment,

S = {x ∈ [0,∞] : v(x) = g(x)}.

A verification result providing sufficient conditions for a solution of the HJB equation to be the
value function can be found in the appendix. We note that the function g is increasing, allowing
us to guess that

C = (0, x∗) and S = [x∗,∞),

where x∗ is the investment threshold, which will be defined in the proposition below. This means
that while the process X is in the continuation region, i.e. 0 < X < x∗, the firm should wait to
invest, and as soon as the process reaches the level x∗, the firm invests immediately.

The value function in the waiting region is the solution of the ODE (3.2), which has the following
general form

v(x) = Axβ1 +Bxβ2 , x > 0,
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where β1 and β2 are the roots of the characteristic polynomial r − µβ − σ2

2 β(β − 1) = 0. It is a
matter of trivial calculations to get the expressions:

β1 =
−(µ− 1

2σ
2) +

√
(µ− 1

2σ
2)2 + 2σ2r

σ2
> 1,

β2 =
−(µ− 1

2σ
2)−

√
(µ− 1

2σ
2)2 + 2σ2r

σ2
< 0.

Proposition 3.1. Let V be the value function defined as in (2.7). Then V is given by:

V (x) =

{
Axβ1 , 0 < x < x∗

g(x), x ≥ x∗
. (3.3)

The parameter A and the threshold x∗ are given by:

A =
(x∗)1−β1

r − µ

(
1− λ

r − µ
(u+ E(Z(f(U))) + αM(h∗(U)))

)
−
(
K +

θ

r

)
(x∗)−β1 , (3.4)

x∗ =

(
K + θ

r

)
β1(r − µ)2

(β1 − 1) ((r − µ)− λ(u+ E(f(z∗(U))) + αM(h∗(U))))
. (3.5)

Equation (3.3) shows the optimal expected value of the firm. The option value to wait until the
decision to invest in the market is here given by the term Axβ1 . When the firm invests, its value
is given by g(x). A firm that is waiting to invest will buy the optimal insurance contract at the
investment moment. The total value paid by this firm to the insurance company is then given by

Ex∗

[∫ ∞

0
e−rtXt

Nt∑
i=0

(
E(h(U)) + αM(h(U))

)
dt

]
=

λx∗

r − µ

(
E(h(U)) + αM(h(U))

)
. (3.6)

Next, we present a comparative static regarding the uncertainty parameters µ, σ and λ. With
such analysis, we may understand how the firm should adapt its investment strategy when there
is a sudden change in both the market behavior or the intensity of the adverse occurrences. The
following proposition shows the impact of each parameter in the investment decision.

Proposition 3.2. Let x∗ be the threshold defined in Proposition 3.1 by Equation 3.5. Then x∗ is
monotonically increasing with σ and λ, but it is not monotonic with µ.

A usual result in real options is that the investment decision is postponed whenever the un-
certainty increases. In this case, the investment decision is postponed when σ increases, which
represents an increase of the market uncertainty, or when λ increases, which leads to an increase
in the expected number of negative occurrences.

The threshold x∗ shows an unusual behavior with the drift µ, since it first decreases and then
increases. This behavior can be explained by the fact that each negative occurrence reduces the
revenue of the firm by a certain percentage, i.e., there is a multiplicative interaction between
the compound Poisson process and the gBm. When µ increases, one expects an increase in the
revenue, which leads to a decrease in the investment threshold because the firm wants to invest
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sooner. However, if the current market state provides the firm with a large revenue, any increase
in µ may indirectly result in the growth of the absolute loss, which will occur if an adverse event
occurs. This loss is not overcompensated by the increase in the revenue. In Figure 1 we display an
example where x∗ is not a monotonic function of µ.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

1.0

1.2

1.4

1.6

1.8

2.0

μ

x*

Figure 1: Monotony of x∗ as a function of µ, with parameters λ = 0.5, r = 0.5, σ = 0.2, u = 0.1,
E(f(U)) = 0.2, θ

r +K = 1, without insurance.

The comparative statics is not changed if another insurance contract is considered instead of
the optimal insurance treaty. In particular, it is not changed if no insurance is considered. Indeed,
the insurance contract is independent of the market conditions since we are considering that Xt is
independent of Ui and Nt.

4 The optimal insurance contract

In this section, we analyze the optimality of the insurance contracts and their impact on the
investment strategy. To find the optimal insurance policy for the firm, we have to solve the following
minimization problem

min
z∈Z

(E(f(z(U))) + αM(h(U))) . (4.1)

We present the optimality conditions under which the contracts z1 and z2, defined in (2.6), are
optimal, considering the cases m = 0 or l = 1. We write z2(u,m) when l = 1 and z2(u, l) when
m = 0. The analysis is performed considering four different risk functions and three premium
principles. The risk functions considered in this paper are the following:

f1(z) = νz, f2(z) = νz2, f3(z) = νz1{z>q}, and f4(z) = ν
√
z, (4.2)

where ν > 0. These functions are possible representations of the firm’s risk assessment. While f1
assesses risk in a linear way, f2, f3 and f4 do it in a different manner, weighting more or less the
underlying risk. As mentioned in Section 2, we restrict our analysis to premium principles based on
moments, namely the expected value, the variance, and the standard deviation premium principles.
These premium principles are defined as in Equation (2.2) considering M as the expected value,
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the variance, and the standard deviation, respectively. In what follows, we will use the notation
u2 = E(U2), u1/2 = E(U1/2), V ar(U) = σ2(U), and

√
V ar(U) = σ(U).

The results regarding the optimal insurance treaty depend on the underlying risk distribution
for the proportion of the losses, U , the frequency of the adverse events, λ, the firm risk preference
function, f , and the insurance premium, M . Therefore, our analysis is organized into two parts.
In Section 4.1, we assume that the insurer always opts for the expected value premium principle,
and, therefore, the optimal treaty for the firm depends only on its risk preferences and the type of
insurance chosen, given an underlying risk. In Section 4.2, the firm opts to transfer a percentage
of its risk, which means that variations on the optimal quantity of risk transferred depend only on
the insurance premium and the firm’s risk preferences, given an underlying risk.

We illustrate the results below with numerical examples. The optimal insurance treaty does
not depend on the market conditions, namely on the market parameters. Nevertheless, it is worth
mentioning that the firm’s investment decision is impacted by both the market conditions and the
optimal insurance treaty. We consider the following market parameters for the numerical results:
σ = 0.2, µ = 0.005, r = 0.05 and I = 1. For the sake of simplicity, we always consider ν = 0.5
and α = 0.3. We consider two different scenarios for the underlying risk that lead to significantly
different optimal solutions.

Scenario 1: In the first scenario, the frequency of the adverse events is lower, λ = 0.04, and
the impact of each event is larger, modeled through a Beta distribution with parameters a = 2.8
and b = 1.2.

Scenario 2: In the second scenario, the frequency of the adverse events is higher, λ = 0.08, and
the size impact of each event is smaller on average, being modeled by means of a Beta distribution
with parameters a = 1.2 and b = 2.8.

The Beta density is parameterized as follows

pU (u) =
Γ(a+ b)

Γ(a)Γ(b)

1

u
ua (1− u)b−1, 0 < u < 1,

and Figure 2 depicts the two considered Beta densities for the impact of each event, U , in the two
scenarios.

Scenario 1

Scenario 2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

Scenario 1 Scenario 2

E[U ] = u 0.7 0.3

E[U2] = u2 0.532 0.132

E[
√
U ] = u1/2 0.825652 0.510476

Figure 2: Right: Density functions of the Beta distributions for each scenario considered. Left:
Moments of U used in the different insurance premia and in the optimal solutions.
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4.1 Expected value premium principle

In this subsection, we assume that the premium principle is calculated according to the expected
value principle, i.e., P = E(h(U))+αM(h(U)), withM(h(U)) = E(h(U)). In the next propositions,
we find the optimal contracts for each risk function. The case of the linear function f1(z) = νz is
in Proposition 2.1.

Proposition 4.1. Consider the expected value premium principle and the risk function f2(z) =
νz2. Then, the optimal contracts in the classes of (i) proportional contracts, (ii) contracts with a
deductible, and (iii) contracts with a limit are characterized respectively by

(i) â =

{
αu
2νu2

, ν > αu
2u2

1, ν ≤ αu
2u2

, (ii) m̂ =

{
α
2ν , ν > α

2

1, ν ≤ α
2

,

and

(iii) l̂ = min
0≤l≤1

{
2ν

(∫ 1

l
(y − l)SU (y)dy

)
+ α

∫ l

0
SU (y)dy

}
.

Figure 3 shows the value function, the value of the investment thresholds x∗, the optimal level
of insurance to buy, and the total premium the firm pays to the insurance company. In this case,
we can observe that the firm benefits from buying the optimal quantity of insurance because its
expected value increases even though it pays an insurance premium. This can be observed through
the value functions, which are higher for each x when the firm buys the optimal quantity of any of
the insurance contracts. Looking at the optimal investment thresholds, we can also conclude that
the firm invests earlier in the market if it starts buying these quantities of insurance. The contract
with a deductible is the one that increases the most the firm value, although the proportional
insurance contract also leads to a very similar firm’s value. For the insurance contract with a
deductible, the firm accommodates losses up to 30% of the firm’s value. For losses greater than
this value, the insurer covers the difference. For the proportional contract, the insurer covers 40%
of the losses. Finally, for the contract with a limit, the insurer is liable for losses up to 46.5% of
the firm’s value. The firm’s value in the second scenario is shown in Figure 10, in the Appendix A.
In that case, buying insurance does not improve the firm’s value much. This is explained by the
fact that the adverse events have a small impact on the value of the firm, on average.

Proposition 4.2. Consider the expected value premium principle and the risk function f3(z) =
νz1{z>q}. Then, the optimal contracts in the classes of (i) proportional contracts, (ii) contracts
with a deductible, and (iii) contracts with a limit are characterized respectively by

(i) â = arg min
a∈[q,1]

(
νa

∫ 1

q
a

yfU (y)dy + α(1− a)u

)
, (ii) m̂ =

{
1, ν < α

q, ν ≥ α
, and

(iii) l̂ = arg min
0≤l≤1−q

(
α

∫ l

0
SU (y)dy + νqSU (l + q) + ν

∫ 1

l+q
SU (y)dy

)
.

Proposition 4.2 provides expressions to find the optimal quantity of insurance the firm buys
to maximize its value when it is mainly concerned with risks that may lead to large unexpected
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No insurance

Proportional

With deductible

With limit

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0

0.5

1.0

1.5

2.0

2.5

x

V
(x
)

Contract x∗ optimal value premium

No insurance 0.636792 — —

Proportional 0.394818 â =0.394737 0.193299

With deductible 0.389766 m̂ =0.3 0.181794

With limit 0.414386 l̂ =0.465 0.213703

Figure 3: Illustration of the results from Proposition 4.1 when the underlying risk is given by
Scenario 1. Right: Value function for each optimal insurance contract. Left: Optimal investment
thresholds, insurance contracts, and respective premia.

losses. The solution of this case is highly dependent on the size of the insurance claim, which
is represented here by the U density and survival functions. Figure 4 depicts the firm’s optimal
value for Scenario 1 and presents the optimal quantities associated with the solution. We can also
observe the optimal investment thresholds and insurance contracts. In this case, the proportional
contract is the best option for the firm, while the contract with a deductible provides a solution
very similar to the case with no insurance. We note that the cost of buying an insurance contract
with a deductible is 0.0081, while the cost of a proportional contract is 0.031. Nevertheless, it is
optimal to buy proportional insurance. As in the previous case, buying insurance increases the
value of the firm on average. Looking at Figure 11, in Appendix A, one can conclude that the firm
has no incentive to buy insurance when the loss size is small.

No insurance

Proportional

With deductible

With limit

0.0 0.1 0.2 0.3 0.4

0.0

0.5

1.0

1.5

2.0

x

V
(x
)

Contract x∗ optimal value premium

No insurance 0.345496 — —

Proportional 0.257306 â =0.85 0.0312198

With deductible 0.340729 m̂ =0.85 0.00807249

With limit 0.266391 l̂ =0.15 0.0460926

Figure 4: Illustration of the results from Proposition 4.2 when the underlying risk is given by
Scenario 1. Right: Value function for each optimal insurance contract. Left: Optimal investment
thresholds, insurance contracts, and respective premia.
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Proposition 4.3. Consider the expected value premium principle and the risk function f4(z) =
ν
√
z. Then, the optimal contracts in the classes of (i) proportional contracts, (ii) contracts with a

deductible, and (iii) contracts with a limit are characterized respectively by

(i) â =

0, ν ≥ αu
u1/2

1, ν < αu
u1/2

, (ii) m̂ =

0, ν ≥ αu
u1/2

1, ν < αu
u1/2

, (iii) l̂ =

{
ν2

4α2 , ν < 2α

1, ν ≥ 2α
.

In Proposition 4.3, the firm assesses its risk using a square root function. Since the losses
are measured as a percentage of the firm’s value, this risk function amplifies the impact of their
unexpected losses. Consequently, the firm’s value with no insurance is much smaller than the firm’s
value when the optimal quantity of insurance for any contract is considered, as seen in Figure 5.
Losses are so relevant that the firm is willing to pass all the risk to the insurer in the proportional
contract and in the contract with a deductible. Therefore, the optimal threshold of investment and
the total premium paid by the firm are equal in these two contracts. The results for the second
scenario are similar, although the original losses are smaller than in the first scenario, as illustrated
in Figure 12, in Appendix A.
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Proportional

With deductible

With limit

0.0 0.2 0.4 0.6 0.8

0.0

0.5

1.0

1.5

2.0

2.5

x

V
(x
)

Contract x∗ optimal value premium

No insurance 8.31707 — —

Proportional 0.47093 â =0 0.38093

With deductible 0.47093 m̂ =0 0.38093

With limit 0.74719 l̂ =0.694444 0.528608

Figure 5: Illustration of the results from Proposition 4.3 when the underlying risk is given by
Scenario 1. Right: Value function for each optimal insurance contract. Left: Optimal investment
thresholds, insurance contracts, and respective premia.

4.2 The proportional contract

In this subsection, we assume that the firm intends to buy a proportional contract to protect itself
against unpredictable risk, i.e., z1(U) = aU , with 0 < a < 1. In the next propositions, we will
present the optimal contract for each risk function and premium principle.

Proposition 4.4. Consider the quota-share contract and the risk function f1(z) = νz. The optimal
level of risk that should be transferred for the insurer, â, when the premium principle is based on

12



the (i) expected value, (ii) variance, and (iii) standard deviation is given by

(i) â =

{
1, ν < α

0, ν > α
, (ii) â =

{
1− νu

2ασ2(U)
, ν < 2ασ2(U)

u

0, ν > 2ασ2(U)
u

, (iii) â =

{
1, ν < ασ(U)

u

0, ν > ασ(U)
u

.

Figure 6 illustrates the results of Proposition 4.4 for Scenario 1. In this case it is always optimal
to transfer all the risk to the insurance company. This is related to the fact that ν is significantly
larger than α. However, the total price paid by the firm is different because the insurer uses different
premium principles in each case. Thus, the optimal insurance contract is the cheapest one, i.e., the
proportional contract with the variance premium principle. Indeed, since losses are measured as a
percentage of the firm’s value, i.e., with values between zero and one, then the variance is smaller
than the expected value of the losses. The results for Scenario 2 are similar and are depicted in
Figure 13.
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x

V
(x
)

Premium x∗ â premium

No insurance 1.35 — —

Exp. Value 0.47093 0 0.38093

Variance 0.245514 0 0.155514

Std. Deviation 0.278528 0 0.188528

Figure 6: Illustration of the results from Proposition 4.4 when the underlying risk is given by
Scenario 1. Right: Value function for each optimal insurance contract. Left: Optimal investment
thresholds, insurance contracts, and respective premia.

Proposition 4.5. Consider the quota-share contract and the risk function f2(z) = νz2. The
optimal level of risk that should be transferred for the insurer, â, when the premium principle is
based on the (i) expected value, (ii) variance, and (iii) standard deviation is given by

(i) â =

{
αu
2νu2

, ν > αu
2u2

1, ν < αu
2u2

, (ii) â =
α σ2(U)

νu2 + ασ2(U)
, (iii) â =

{
â = ασ(U)

2νu2
, ν > ασ(U)

2u2

1, ν < ασ(U)
2u2

.

Proposition 4.5 presents the optimal percentage of the losses that the firm retains when the
firm’s risk function is quadratic. In Figure 7, it can be seen that buying the optimal levels of
insurance increases the firm’s value. On the other hand, the premium calculated based on the
variance premium principle benefits the firm. It is optimal to buy insurance because the size of the
losses is relatively high. In Scenario 2, where losses are smaller, the impact of buying insurance is
less relevant, as seen in Figure 14.
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Std.Deviation
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Premium x∗ â premium

No insurance 0.636792 — —

Exp. Value 0.394818 0.394737 0.193299

Variance 0.245175 0.0452261 0.148157

Std. Deviation 0.275832 0.115567 0.165127

Figure 7: Illustration of the results from Proposition 4.5 when the underlying risk is given by
Scenario 1. Right: Value function for each optimal insurance contract. Left: Optimal investment
thresholds, insurance contracts, and respective premia.

Proposition 4.6. Consider the quota-share contract and the risk function f3(z) = νz1{z>q}. The
optimal level of risk that should be transferred for the insurer, â, when the premium principle is
based on the (i) expected value, (ii) variance, and (iii) standard deviation is given by

â = arg min
a∈[q,1]

(
νa

∫ 1

q
a

yfU (y)dy + αM((1− a)U)

)
where M((1− a)U) equals (i) (1− a)u, (ii) (1− a)2σ2(U), and (iii) (1− a)σ(U).

In Proposition 4.6, we present the equation to calculate the optimal percentage of the loss
retained by the firm when it considers function f3 to assess risk. This risk function considers only
large losses. Figure 8 shows that, regardless of the premium principle, it is always optimal to retain
85% of the losses and to transfer the remaining 15%. This mainly happens because we are fixing q
at the level 0.85. Although the optimal retaining level is always the same, the optimal time to invest
and the amount paid to the insurer is different when the insurer uses different premium principles.
In Figure 15, the optimal solution for Scenario 2 is depicted. Since the losses are expected to
be smaller in this scenario, the firm has almost no incentive to buy insurance, and consequently,
optimal levels â are always larger.

Proposition 4.7. Consider the quota-share contract and the risk function f4(z) = ν
√
z. The

optimal level of risk that should be transferred for the insurer, â, when the premium principle is
based on the (i) expected value, (ii) variance, and (iii) standard deviation is given by

(i) â =

0, ν ≥ αu
u1/2

1, ν < αu
u1/2

, (ii) â = arg min
a∈[0,1]

{√
aνu1/2 + α(1− a)2σ2(U)

}
,

(iii) â =

0, ν ≥ ασ(U)
u1/2

1, ν < ασ(U)
u1/2

.
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)

Premium x∗ â premium

No insurance 0.345496 — —

Exp. Value 0.257306 0.85 0.0312198

Variance 0.238394 0.85 0.0223102

Std. Deviation 0.24352 0.85 0.0247248

Figure 8: Illustration of the results from Proposition 4.6 when the underlying risk is given by
Scenario 1. Right: Value function for each optimal insurance contract. Left: Optimal investment
thresholds, insurance contracts, and respective premia.

In Proposition 4.7, the risk function f4 is considered and consequently the firm is strongly
concerned with the impact of having unexpected losses. Thus, the numerical results in Figure 9
show that the firm decides to pass all its losses to the insurance company, meaning that the price
requested by the insurer compensates for its risk. Once more, pricing the insurance contract with
the variance premium principle leads to the cheapest option. A similar behaviour can be found in
Figure 16, when we consider losses with smaller size.
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Premium x∗ â premium

No insurance 8.31707 — —

Exp. Value 0.47093 0 0.38093

Variance 0.245514 0 0.155514

Std. Deviation 0.278528 0 0.188528

Figure 9: Illustration of the results from Proposition 4.7 when the underlying risk is given by
Scenario 1. Right: Value function for each optimal insurance contract. Left: Optimal investment
thresholds, insurance contracts, and respective premia.
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5 Conclusions

The occurrence of adverse events can have an enormous impact on the profitability of firms. To
protect against the impact of such events, firms can buy insurance, which permits them to transfer
part of their risk to insurance companies. The insurance contracts may have different characteris-
tics, and their optimality depends on the type of adverse event the firm wants to protect against
and how averse the firm is to risk. In this paper, we consider a firm that takes reputation risk into
account when evaluating the possibility of investing in the market.

From our analysis, we can conclude that the optimal type of insurance is heavily dependent on
the size of the loss as well as on the firm’s risk aversion. When buying insurance is optimal, we can
notice that the firm is willing to invest sooner than without insurance. To model risk aversion, we
include different risk functions in the model. From the numerical examples, we can observe that,
in general, the firm benefits from buying proportional insurance when the premium principle used
by the insurance company is based on the expected value.

When the size of each occurrence is small, even if they are more frequent, buying insurance has
little impact on the value of the firm, especially when the firm is less risk averse (see Figures 10
and 11). However, if the firm is more risk averse, then it can be optimal to buy insurance anyway
12. It is worth mentioning that, when comparing the optimal insurance contracts in the classes of
proportional contracts, contracts with a deductible and contracts with a limit, the cheapest option
is not always the contract that increases the firm’s value most. Finally, we note that the volatility of
the revenue postpones the investment decision, while the frequency of adverse events, λ, has a non
linear impact on the investment threshold, because it is represented as a percentage of the firm’s
value. This is in contrast with results in classical real option models, where uncertainty postpones
the investment decision.

Given that, to the best of our knowledge, this is the first work highlighting the importance
of buying insurance in a firm’s investment strategy using a real options approach, we keep the
model simple to facilitate the analysis. It would be interesting to continue with this research by
considering combinations of the insurance treaties analysed in this paper and possible dependencies
between the risk and profitability processes. Furthermore, it would be more realistic to consider
absolute losses in addition to percentage losses, which would result in a more complex model, both
in terms of recovering the value function as well as the optimal insurance strategy.
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A Appendix: additional figures

Here, we present additional figures depicting the numerical results of Propositions 4.1 to 4.7 re-
garding Scenario 2.
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With deductible

With limit
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Contract x∗ optimal value premium

No insurance 0.257634 — —

Proportional 0.249161 â =0.681818 0.0549664

Deductible 0.242061 m̂ =0.3 0.0473515

With limit 0.257634 l̂ =0 0

Figure 10: Illustration of the results from Proposition 4.1 when the underlying risk is given by
Scenario 1. Right: Value function for each optimal insurance contract. Left: Optimal investment
thresholds, insurance contracts, and respective premia.
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Deductible 0.195034 m̂ =0.85 0.000119942

With limit 0.195074 l̂ =0 0

Figure 11: Illustration of the results from Proposition 4.2 when the underlying risk is given by
Scenario 1. Right: Value function for each optimal insurance contract. Left: Optimal investment
thresholds, insurance contracts, and respective premia.

B Appendix: auxiliary results

In this section, we introduce some results and the necessary notation to proceed with the analysis of
the insurance contract for the firm. For each type of contract, premium principle, and risk function,
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Contract x∗ optimal value premium

No insurance 6.97145 — —

Proportional 0.293478 â =0 0.203478

Deductible 0.293478 m̂ =0 0.203478

With limit 0.302388 l̂ =0.694444 0.206937

Figure 12: Illustration of the results from Proposition 4.3 when the underlying risk is given by
Scenario 1. Right: Value function for each optimal insurance contract. Left: Optimal investment
thresholds, insurance contracts, and respective premia.
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Exp. Value 0.293478 0 0.203478

Variance 0.202581 0 0.112581

Std. Deviation 0.251843 0 0.161843

Figure 13: Illustration of the results from Proposition 4.4 when the underlying risk is given by
Scenario 1. Right: Value function for each optimal insurance contract. Left: Optimal investment
thresholds, insurance contracts, and respective premia.

we will present the relevant moments. Most of these results can be found in reference books in the
field of risk and insurance, such as [18].

Proposition B.1. Let U be a random variable with support in the interval (0, 1) and z2 defined as
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Std. Deviation 0.235097 0.46577 0.0807122

Figure 14: Illustration of the results from Proposition 4.5 when the underlying risk is given by
Scenario 1. Right: Value function for each optimal insurance contract. Left: Optimal investment
thresholds, insurance contracts, and respective premia.
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Figure 15: Illustration of the results from Proposition 4.6 when the underlying risk is given by
Scenario 1. Right: Value function for each optimal insurance contract. Left: Optimal investment
thresholds, insurance contracts, and respective premia.

in (2.6). Then,

E(z2(U,m)) =

∫ m

0
SU (x)dx, E(h2(U,m)) =

∫ 1

m
SU (x)dx

E(z22(U,m)) =

∫ m

0
2xSU (x)dx, E(h22(U,m)) =

∫ 1

m
2(x−m)SU (x)dx

E(z
1/2
2 (U,m)) =

1

2

∫ m

0
x−1/2SU (x)dx, E(h

1/2
2 (U,m)) =

∫ 1

m
1/2(x−m)−1/2SU (x)dx

E(z2(U, l)) =

∫ 1

l
SU (x)dx, E(h2(U, l)) =

∫ l

0
SU (x)dx

E(z22(U, l)) =

∫ 1

l
2(x− l)SU (x)dx, E(h22(U, l)) =

∫ l

0
2xSU (x)dx

E(z
1/2
2 (U, l)) =

∫ 1

l

1

2
(x−m)−1/2SU (x)dx, E(h

1/2
2 (U, l)) =

1

2

∫ l

0
x−1/2SU (x)dx

19



No insurance

Exp. Value

Variance

Std.Deviation

0.00 0.05 0.10 0.15

0.0

0.2

0.4

0.6

0.8

x

V
(x
)

Premium x∗ â premium
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Figure 16: Illustration of the results from Proposition 4.7 when the underlying risk is given by
Scenario 1. Right: Value function for each optimal insurance contract. Left: Optimal investment
thresholds, insurance contracts, and respective premia.

In the next proposition, we compute the expected value of the risk function f3(z(U)) = 1{z(U)>q}
for each of the insurance contracts considered.

Proposition B.2. Let U be a random variable with support in the interval (0, 1), the risk function
f3(z(U)) = 1{z(U)>q}, and z1, and z2 defined as in (2.6). Then,

E(f3(z1(U))) = ν

(
a

∫ 1

q
a

ufU (u)du

)
1{a>q}

E(f3(z2(U ;m))) = ν

(∫ m

q
SU (u)du+ qSU (q)

)
1{m>q} and

E(f3(z2(U ; l))) = ν

(∫ 1

l+q
SU (u)du+ qSU (l + q)

)
1{l<1−q}

Proof. To compute the expected value E(f(z1(U))) one should notice that

E(f(Z(U))) =νa

∫ 1

0
x1{ax>q}fU (x)dx.

Taking into account that the support of the random variable U is the interval (0, 1), then we obtain
the expression in Proposition B.1.

The second expected value E(f(z2(U ;m))) can be obtained noticing that

z2(U ;m)1{z2(U ;m)>q} =


0, m ≤ q

0, (U ≤ q) ∧ (m > q)

U, (q < U < m) ∧ (m > q)

m, (U ≥ m) ∧ (m > q)

.
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The result in Proposition B.1 follows immediately noticing that for m > q

E(Z(u)1{Z(U)>q}) =

∫ M

q
ufU (u) du+

∫ 1

M
MfU (u) du =

∫ M

q
SU (u)du+ qSU (q),

where the second equality follows as a result of the integration by parts.
Finally, to compute the expected value of E(f(z2(U ; l))), we can observe that

z2(U ; l)1{z2(U ;l)>q} =


0, (U ≤ l + q) ∧ (l < 1− q)

(U − L), (U > l + q) ∧ (l < 1− q)

0, l ≥ 1− q

.

The expected value in Proposition B.1 can be easily obtained noticing that for l < 1− q

E(Z(U)) =

∫ 1

L+q
(u− L)fU (u) u =

[
− uSU (du)

]1
L+q

+

∫ 1

L+q
SU (u)du− LP (U > L+ q)

=qSU (L+ q) +

∫ 1

L+q
SU (u)du.

C Appendix: verification theorem

In this appendix, we present a verification result, which provides sufficient conditions for a solution
of the HJB equation to be the value function of our problem. The proof of the next theorem follows
the lines of Theorem 3.2 in [20], which we include for the sake of completeness.

Theorem C.1. Let v be a differentiable function with absolutely continuous derivative such that v
is a solution to HJB equation (3.1) and the process{∫ s∧t

0
σXuv

′(Xu)dWu

}
s≥0

be a martingale. (C.1)

Then, for all x > 0,

1) v(x) ≥ J(x, τ, z), for all τ ∈ T and z ∈ Z;

2) if

lim
t→∞

Ex

[
e−rtv(Xt)1{τ∗>t}

]
= 0, (C.2)

then v(x) = J(x, τ∗, z∗) = V (x), when τ∗ = inf{t ≥ 0 : v(Xt) = g(Xt)}.

Proof. Let v be a differentiable function with absolutely continuous derivative. Using the Itô-
Tanaka formula (see [31]), we get that

Ex

[
e−r(t∧τ)g(Xt∧τ )

]
= v(x) + Ex

[
e−r(t∧τ) (g(Xt∧τ )− v(Xt∧τ ))

]
+ Ex

[∫ t∧τ

0
σXsv

′(Xs)ds

]
= Ex

[∫ t∧τ

0

σ2X2
s

2
v′′(Xs) + µXsv

′(Xs)− rv(Xs)ds

]
. (C.3)
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Since v satisfies the HJB equation (3.1) we get that

Ex

[
e−r(t∧τ) (g(Xt∧τ )− v(Xt∧τ ))

]
≤ 0,

Ex

[∫ t∧τ

0

σ2X2
s

2
v′′(Xs) + µXsv

′(Xs)− rv(Xs)ds

]
≤ 0.

Condition (C.1) guarantees that

Ex

[∫ t∧τ

0
σXsv

′(Xs)ds

]
= 0.

Then, we obtain that

Ex

[
e−r(t∧τ)g(Xt∧τ )

]
≤ v(x).

Using the strong Markov property and the dominated convergence theorem, one can easily see that

v(x) ≥ lim
t→0

Ex

[
e−r(t∧τ)g(Xt∧τ )

]
=

lim
t→0

E

∫ ∞

t∧τ
e−rs

Xs

(
1−

Ns−(t∧τ)∑
i=0

(
Ui + f(z∗(Ui)) + αM(Ui − z∗(Ui))

))
− rK − θ

 dt

 =

E

∫ ∞

τ
e−rs

Xs

(
1−

Ns−(τ)∑
i=0

(
Ui + f(z∗(Ui)) + αM(Ui − z∗(Ui))

))
− rK − θ

 dt

 .

Consequently, we have that
v(x) ≥ J(x, τ, z),

which proves 1).
To prove 2), we note that

Ex

[
e−r(t∧τ∗)v(Xt∧τ∗)

]
= Ex

[
e−r(t∧τ∗) (g(Xτ∗)1{τ∗≤t} + v(Xt)1{τ∗>t}

)]
,

Ex

[∫ t∧τ∗

0

σ2X2
s

2
v′′(Xs) + µXsv

′(Xs)− rv(Xs)ds

]
= 0.

combining these facts with condition (C.1) and Equation (C.3), we get that

Ex

[
e−rτ∗g(Xτ∗)1{τ∗≤t}

]
= v(x)− Ex

[
e−rtv(Xt)1{τ∗>t}

]
.

As above, using the strong Markov property and the dominated convergence theorem, we obtain

J(x, τ∗, z∗) = V (x),

when we assume that t → ∞ as well as condition (C.2).
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D Appendix: Proofs

In this appendix, we present the proofs to Propositions 3.1, 3.2, and 4.1 to 4.7.

D.1 Proposition 3.1

The proof of this proposition follows the usual arguments for investment options [9]. To find the
parameter A and the threshold x∗, we use the smooth-parting conditions, which allows us to obtain
the following system of equations:

Ax∗β1 = g(x∗)

β1Ax
∗(β1−1) =

1

r − µ

(
1− λ

r − µ

(
u+ E(f(z(U))) + αM(U − z(U))

))
,

where g(·) = g̃(·, z∗), with g̃ defined in (2.8). By solving the system of equations, we obtain the
parameters A and x∗.

D.2 Proposition 3.2

It is a matter of calculations to verify that

∂x∗

∂λ
=

(
K + θ

r

)
β1(r − µ)2 (β1 − 1)

(
u+ E(f(z∗(U))) + αM(h∗(U))

)(
(β1 − 1) ((r − µ)− λ(u+ E(f(z∗(U))) + αM(h∗(U))))

)2 > 0,

the last inequality following trivially from the assumptions in the model.
To compute the derivative of x∗ regarding σ, we start by noting that

∂βi
∂σ

= (−1)i
σβi(βi − 1)√(

µ− 1
2σ

2
)2

+ 2σ2r
.

Consequently, β1 is decreasing with σ and β2 is increasing with σ. We can write the derivative of
x∗ in order to σ as follows:

∂x∗

∂σ
=

−∂βi

∂σ

(β1 − 1)2
×

(
K + θ

r

)
(r − µ)2

(r − µ)− λ(u+ E(f(z∗(U))) + αM(h∗(U)))
> 0.

D.3 Proposition 4.1

We look separately for each of the three contracts we are considering. Regarding the proportional
contract, the optimization problem (4.1) reduces to

min
0≤a≤1

{
νa2 u2 + α(1− a)u)

}
.

Since we have a quadratic function in a, it is trivial that the minimum takes the form

â =

{
αu
2νu2

, 2νu2 − αu > 0

1, 2νu2 − αu ≤ 0
.
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Regarding the contract with a deductible, using the expressions in Appendix B, one can easily
see that the optimization problem (4.1) becomes

min
0≤m≤1

{
2ν

(∫ m

0
ySU (y)dy

)
+ α

∫ 1

m
SU (y)dy

}
≡ min

0≤m≤1
ζ(m).

Calculating the derivative
∂ζ

∂m
= SU (m)(2mν − α),

allows us to verify that the function ζ is decreasing in m while m < α
2ν , and it increases afterwards.

Thus, the optimal m takes the form

m̂ =

{
α
2ν , 2ν − α > 0

1, 2ν − α ≤ 0
.

Finally, the optimization problem (4.1) for the contract with a limit becomes

min
0≤l≤1

{
2ν

(∫ 1

l
(y − l)SU (y)dy

)
+ α

∫ l

0
SU (y)dy

}
≡ sup

0<l<1
ζ(l).

Calculating the derivative of ζ in l, we obtain that ζ ′(l) = αSU (l) − 2ν
∫ 1
l SU (y)dy. One can

conclude that the monotony of ζ is dependent on the distribution of U . Consequently, we obtain
the result in Proposition 4.1.

D.4 Proposition 4.2

We start by proving the result for the proportional contract. Taking into account Propositions B.1
and B.2, the minimization problem (4.1) can be written as min0≤a≤1 ζ(a) where

ζ(a) = ν

(
a

∫ 1

q
a

ufU (u)du

)
1{a>q} + α(1− a)u.

The the function ζ is clearly decreasing whit a, when a ≤ q. However, when a ≤ q, the monotony of
ζ depends on the shape of the density function of U . Thus, the optimal a is given by the minimum
of u+ νa

∫ 1
q
a
ufU (u)du+ α(1− a)u for a ≥ q.

For a contract with a deductible, problem (4.1) can be written as min0≤a≤1 ζ(m) where the
function ζ is defined as

ζ(m) = ν

(∫ m

q
SU (y)dy + qSU (q)

)
1{m>q} + α

∫ 1

m
SU (y)dy.

Consequently, for m < q , ∂ζ
∂m = −αSU (m) < 0, and for m > q, ∂ζ

∂m = SU (m)(ν − α). Therefore,
there are two possible situations: if α > ν, function ζ is decreasing for all values of m; and if α < ν,
function ζ decreases until m = q and increases afterwards.
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For the last case, the contract with a limit, the optimization problem (4.1) becomes min0≤l≤1 ζ(l),
where

ζ(l) = u+ α

∫ l

0
SU (u)du+ ν

(
qSU (l + q) +

∫ 1

l+q
SU (u)du

)
1{l<1−q}.

When l < 1− q, the derivative of function ζ is as follows:

ζ ′(l) = α SU (L)− ν SU (L+ q)− ν q fU (L+ q).

On the other hand, when l > 1− q, the derivative of function ζ is given by

ζ ′(l) = α SU (L) > 0.

Function ζ is continuous and thus its minimum is obtained as stated in Proposition 4.2.

D.5 Proposition 4.3

To obtain the result for the proportional contract we notice that the optimization problem (4.1)
can be written as

min
0<a<1

{√
aνu1/2 + α(1− a)u

}
≡ min

0≤a≤1
ζ(a).

Taking the derivative of ζ, we obtain that ∂ζ(a)
∂a =

νu1/2

2
√
a
− αu. Then, then the function ζ increases

in

(
0,min

(
1,
(
νu1/2

2αu

)2))
and decreases in

(
min

(
1,
(
νu1/2

2αu

)2)
, 1

)
. This means that ζ has an

absolute maximum in the interval (0,1) and consequently, the minimum comes from the comparison
between ζ(0) and ζ(1).

For contracts with a deductible, the optimization problem can be defined as sup
0<m<1

ζ(m) where

ζ(m) =
1

2
ν

∫ m

0
u

−1
2 SU (u) du+ α

∫ 1

m
SU (u)du.

Taking into account that ∂ζ
∂m = SU (m)

(
ν

2
√
m
− α

)
, we use a similar argument to the previous one

to obtain the optimal contract.
Finally, for contracts with a limit we have

sup
0<l<1

ζ(L) ≡ min
0<l<1

{
1

2
ν

∫ 1

l
u

−1
2 SU (u)du+ α

∫ l

0
SU (u)du

}
.

Taking the derivative of ζ, we get ∂ζ
∂l = SU (l)

(
α− ν

2
√
l

)
, which is decreasing for values of l ≤ ν2

4α2

and increasing otherwise. This proves the result.
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D.6 Proposition 4.4

Part (i) is a consequence of Proposition 2.1. Regarding part (ii), one can see that (4.1) becomes

min
0<a<1

{
νau+ α(1− a)2σ2(U)

}
.

Calculating trivial derivatives allows us to observe that the optimal level of a is as in (ii). The last
part can be proved following noticing that (4.1) can be written as

min
0<a<1

{
νau+ α(1− a)σ(U)

}
.

Since the function is linear in a we get our result.

D.7 Proposition 4.5

Part (i) was already proved in Proposition 4.1. To prove part (ii), one only needs to notice that
(4.1) simplifies as

min
0<a<1

{
νa2u2 + α(1− a)2σ2(U)

}
.

Taking the derivatives, one can see that the quadratic function as an absolute minimum a∗, as
defined in the proposition, satisfying 0 < a∗ < 1, which proves this part of the proof.

Finally, to prove part (iii), we notice that (4.1) simplifies as

min
0<a<1

{
νa2u2 + α(1− a)σ(U)

}
.

Since the minimum is attained at a = ασU
2νu2

, which is not necessarily smaller than 1, we get a∗ as
defined in the proposition.

D.8 Proposition 4.6

Part (i) is proved in Proposition 4.2. The proof of part (ii) and (iii) follows the same steps because
in all cases the function M((1− a)U) is decreasing in a. Then the monotony for values of a ∈ [q, 1]
depends on the distribution of U .

D.9 Proposition 4.7

The proof is already done when we have the expected value premium principle. For the variance
premium principle, one can easily see that â cannot be calculated analytically because the derivative
of

√
aνu1/2 + α(1− a)2σ2(U) is given by

ν u1/2

2
√
a

− 2ασ2(U)(1− a).

Finally, when the premium principle is the standard deviation, one can notice that

arg min
a∈[0,1]

{√
aνu1/2 + α(1− a)σ(U)

}
≡ arg min

a∈[0,1]
ζ(a).
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Then, taking the derivative of ζ(a), we get ζ ′(a) =
ν u1/2

2
√
a

− ασ(U), which has a zero when a =(
ν u1/2

2ασ(U)

)2
. This point is a maximizer if

ν u1/2

2ασ(U) < 1, otherwise the function ζ is always increasing.

Consequently, the minimizer is a = 0 if ν ≥ ασ(U)
u1/2

or a = 1 otherwise.
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