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Abstract

We discuss a possible framework for a (pseudo) rough vol-of-vol
model through a multi-factor Markovian approximation of the vol-of-
vol process. We identify a key martingale condition which may allow to
express the VIX in terms of the solution of a certain Riccati ordinary
di�erential equation. We derive this equation and provide su�cient
conditions for the existence of solutions. We also provide some partial
results regarding the martingale condition. In particular, we verify a
local martingale condition.
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1 INTRODUCTION

1 Introduction

The academic community has shown a great deal of interest in rough volatility
modeling since the groundbreaking studies of [Gatheral et al., 2018] and
[Bayer et al., 2016]. The log-volatility in rough volatility models behaves as a
fractional Brownian motion with a Hurst exponent H < 1/2. Because of this,
compared to conventional Brownian motion models, the sample trajectories are
rougher in the sense that they have a lower Hölder continuity exponent. One of
the �rst rough volatility models proposed, the rBergomi model, adjusts very well
to the S&P 500 index and requires a small number of parameters. Empirical
evidence of rough volatility is discussed in detail in [Livieri et al., 2018] and
[Bennedsen et al., 2021]. The micro-structural basis for rough volatility is
provided by [El Euch et al., 2018] and asymptotic results are discussed by
[Alòs et al., 2007] and [Fukasawa, 2011].

The rBergomi model's inability to generate anything except �at smiles for the
Chicago Board Options Exchange Volatility Index (VIX) options market is one
of its main disadvantages since the the empirical smiles associated to VIX are
non�at. This topic can be approached in a variety of ways (see [Alòs et al., 2022]).
Similar to the Black-Scholes model, in which volatility is constant and �at S&P
500 smiles are observed, the rBergomi model exhibits �at VIX smiles caused by a
constant volatility of volatility (vol-of-vol). Therefore, adding stochastic vol-of-vol
to generate non�at VIX smiles is a natural way to proceed. The Stochastic Volterra
models (SVM) introduced in [Horvath et al., 2020], are a natural way to generalize
the rBergomi model (see [Bayer et al., 2016]) considering a stochastic vol-of-vol.
In these models, the log-variance is a truncated Brownian semi-stationary (TBSS)
process (see [Barndor�-Nielsen and Schmiegel, 2009] and [Bennedsen et al., 2017])
with stochastic vol-of-vol. The rBergomi model corresponds to the particular case
of a constant vol-of-vol. In [Horvath et al., 2020], SVMs are studied under the
assumption that the Brownian motion that drives the volatility is Markovian and
independent from the vol-of-vol process. These assumptions allow the authors
to derive a semi-closed expression for the CBOE Volatility Index (VIX). Such
expression can then be used to simplify the numerical simulation of the VIX, leading
to computational feasible option pricing routines.

An extended framework of SVM is studied in [Guerreiro and Guerra, 2022], which
admits dependency between the vol-of-vol process and the Brownian motion that
drives the volatility. To overcome the computational di�culties posed by this
more general framework, a least squares Monte Carlo (LSMC) method is
proposed. Typically, LSMC methods are harder to utilize in non-Markovian
frameworks, as the dimension of the state variable used in the regression step is
in�nite. However, exploring the structure of the in�nite dimensional state
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1 INTRODUCTION

variable, it is possible to tailor the LSMC to this non-Markovian setting. Indeed,
it is possible to decompose the state variable in such a way that the regression
step is performed on a variable whose dimension depends on the vol-of-vol
dynamics. By assuming that the vol-of-vol is Markovian, the dimension of this
state variable is �nite. In the particular example of a Cox-Ingersoll-Ross (CIR)
model for the vol-of-vol considered in [Horvath et al., 2020] and
[Guerreiro and Guerra, 2022], this dimension is equal to 1.

As pointed out in [Guerreiro and Guerra, 2022], the SVM framework is able to
accommodate even a rough vol-of-vol. A rough vol-of-vol has been suggested for
instance in [Da Fonseca and Zhang, 2019]. Indeed, using high-frequency data for
major volatility indexes, these authors estimated the volatility of volatility. Their
results suggest that its logarithm follows a fractional Brownian motion with Hurst
parameter smaller than 1/2. Therefore, not only the volatility is rough but it
seems that empirical data also supports the claim that the vol-of-vol is also rough.
Unfortunately, the LSMC approach of [Guerreiro and Guerra, 2022] is not well
suited for this framework, as the vol-of-vol is not Markovian. In this paper, we
consider the Markovian approximation of the rough CIR process, and formulate a
pseudo rough vol-of-vol model. Using such Markovian approximations, we employ
ODE techniques (such as the ones applied in [Horvath et al., 2020]) to obtain a
semi-closed expression for the VIX.

This paper is organized as follows. In Section 2, we de�ne the SVM and its main
properties. Namely, we consider the challenge of VIX simulation and the rough vol-
of-vol challenge. Then, in Section 3, we explore the general properties of Markovian
approximations. Afterwards, in Section 4, we propose the pseudo rough CIR vol-
of-vol model and explore its main properties. In particular, in Section 4.1, we
prove the existence and uniqueness of the Markovian approximation, as well as a
Feller-type condition in order to ensure that the pseudo rough CIR process remains
strictly positive; in Section 4.2 we establish the link between the forward variance
curve and a certain process M ; in Section 4.3, we provide su�cient conditions for
M to be a local martingale; �nally, in Section 4.4 we provide some partial results
on the true martingale property of M .
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2 STOCHASTIC VOLTERRA MODELS

2 Stochastic Volterra models

Before introducing stochastic Volterra models, let us present brie�y the basic
framework for our models. We consider a market with a single risky asset. We
assume there are no interest rates or dividends for the sake of simplicity. We
model the price of the risky asset as a stochastic process S = {St}t≥0, de�ned in
a �ltered probability space (Ω,P, (Ft)t≥0), where the �ltration satis�es the
so-called usual conditions. We denote by v = {vt}t≥0 the variance process, which
is an adapted process. Let us now present a de�nition of SVMs.

De�nition 2.1

Let B and W be two ρ-correlated standard Brownian motions, with ρ ∈ (−1, 1).
Let H ∈ (0, 1/2) be the Hurst parameter. We say that (S, v) follows a stochastic
Volterra model if

dSt = St
√
vtdBt. (2.1)

The variance process v is given by

vu = A0(u) exp(2Xu), (2.2)

where A0 is a deterministic function and Xu is a truncated Brownian
semi-stationary process (TBSS) given by

Xu =

∫ u

0

√
ΓsKα(u− s) ds. (2.3)

The function Kα denotes the fractional kernel Kα(x) = xα−1, with α = H + 1/2.
The vol-of-vol process Γ starts at a given constant Γ0 = γ ≥ 0.

Now we consider the challenge of computing the VIX.

2.1 Computing the VIX

Consider the forward variance curve

ξt(u) = E [vu | Ft] . (2.4)

The VIX is de�ned from the forward variance curve as follows.

De�nition 2.2

The VIX index at time t is given by

V IXt = 100×

√
1

∆

∫ t+∆

t
ξt(u)du. = 100×

√
1

∆
E
[∫ t+∆

t
vudu | Ft

]
. (2.5)

The time horizon ∆ is set (by the Chicago Board Options Exchange) to be 30 days.
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2 STOCHASTIC VOLTERRA MODELS

Fix t > 0. We are interested in simulating values of the random variable V IXt.
Suppose we can simulate the Brownian pathsW , together with the variance process
v. The VIX paths can be easily obtained from ξt(u), with u between T and T + ∆.
Since ξt(t) = vt, we may focus on the case u > t.

Following [Guerreiro and Guerra, 2022], we introduce the notation

Ep,q(u) = exp

(
2

∫ q

p
Kα(u− s)

√
Γs dWs

)
. (2.6)

and de�ne the curve
ht(u) = E [Et,u(u) | Ft] . (2.7)

Proceeding as in [Guerreiro and Guerra, 2022, Proposition 3.1], we decompose the
forward variance curve as follows:

ξt(u) =
ξ0(u)

h0(u)
E0,t(u)ht(u). (2.8)

Now note that apart from ht, obtaining the other variables should be
straightforward. Indeed, the initial forward variance ξ0 can be implied from the
market or considered a constant/piecewise-constant (as a model parameter). The
initial curve h0 can be easily estimated using a simple Monte Carlo simulation.
The process E0,t(u) only depends on the paths of the Brownian motion W and
the vol-of-vol Γ up to time t. Since u > t, there is no singularity in the Kα. Thus
the stochastic integral in E0,t(u) can be estimated using a simple approach such
as a Riemann sum.

If Γ is assumed Markovian and independent of W , by conditioning on (Γs)t≤s≤u,
one obtains

ht(u) = E
[
exp(2

∫ u

t
K2
α(u− s)Γs ds | Γt

]
. (2.9)

By further assuming Γ is an a�ne process (along with some other regularity
conditions), it is shown in [Horvath et al., 2020, Proposition 3] that

ht(u) = exp[ϕ(u− t) + ψ(u− t)Γt), (2.10)

where (ϕ,ψ) solves a certain Riccati ODE.

2.2 Rough vol-of-vol

Note that the framework of De�nition 2.1 allows in principle for the vol-of-vol
process Γ to be a rough process. Working with such model can be motivated
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3 MARKOVIAN APPROXIMATIONS

by empirical evidence such as the one presented in [Da Fonseca and Zhang, 2019],
where the analysis of high-frequency data gives empirical evidence to consider a
rough volatility of volatility.

Although it is possible to apply the LSMC in principle to these models, the
non-Markovianity of the vol-of-vol will greatly increase the number of predictors
for the regression in the LSMC. In this paper, we explore the application of
considering a multi-factor Markovian approximation of the vol-of-vol process.
The advantage of such approximations is that they can be able to produce
processes which possess some of the rough-like features of (truly) rough processes,
whilst remaining analytically tractable. The next section contains a brief
overview of these Markovian approximation techniques.

3 Markovian approximations

In [Abi Jaber, 2019], the authors apply a multi-factor approximation to the rough
Heston model, which functions as a bridge between the classical Heston model
(one factor) and the rough Heston model (the limiting case of an in�nite number
of factors). In [Abi Jaber and El Euch, 2019], the authors apply these techniques
to a wider class of rough volatility models. In [Bayer and Breneis, 2023], the
authors obtain a super-polynomial rate of convergence by employing a
multi-factor Markovian approximation where the choice of nodes is made
according to a Gaussian quadrature rule.

Let us brie�y consider the intuition behind the approximation discussed in
[Alfonsi and Kebaier, 2021]. Suppose we are interested in approximating the
solution of the stochastic rough Volterra equation

Xt = x0 +

∫ t

0
K(t− s)b(Xs)ds+

∫ t

0
K(t− s)σ(Xs)dWs, (3.1)

where x0 ∈ R, b : R → R, σ : R → R+ are globally Lipschitz functions, W is a
standard Brownian motion (sBm), and the kernel K ∈ L2

loc(R+). One
approximation strategy would be to replace the potentially problematic kernel K
by a more manageable one. Recall that a function f is said to be completely
monotone on R+ if it is smooth and (−1)nf (n)(t) ≥ 0 for all n. This de�nition
covers in particular the fractional kernel and any constant positive kernel. Any
completely monotone kernel admits a representation of the form

K(t) =

∫ +∞

0
e−xtdλ(x) , t > 0 (3.2)

for some measure λ on R+ (see for instance [Widder, 1941]).
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3 MARKOVIAN APPROXIMATIONS

Now we may approximate the measure λ by a weighted sum of Dirac measures.
This results in

K̃(t) =

n∑
i=1

wie
−cit (3.3)

for some weights w1, ..., wn ∈ R+ and points c1, ..., cn ∈ R+
0 . By replacing K with

K̃ in (3.1) we obtain

X̃t = x0 +

∫ t

0
K̃(t− s)b(Xs)ds+

∫ t

0
K̃(t− s)σ(Xs)dWs. (3.4)

It happens that the solution to (3.4) can be obtained by solving an n-dimensional
(Markovian) SDE, as the following result (adapted from
[Alfonsi and Kebaier, 2021]) explains.

Proposition 3.1

Let n ∈ N1. Let x0 ∈ R be the initial condition and w1, ..., wn ∈ R+ be the weights.
Suppose m1, ...,mn ∈ R are such that

∑
iwimi = x0. Then the solution of (3.4) is

given by

Xt =

n∑
i=1

wiX
i
t , (3.5)

where (X1, ..., Xn) solves the n-dimensional SDE

dXi
t = ci(mi −Xi

t)dt+ b

 n∑
j=1

wjXj

 dt+ σ

 n∑
j=1

wjXj

 dWt,

Xi
0 = mi.

(3.6)

A key property of this Markovian approximation is the fact that the L2 error
between the random variables XT and X̃T is related to the L2-error between the
kernelsK and K̃, as the following result (adapted from [Alfonsi and Kebaier, 2021])
shows.

Proposition 3.2

Let T > 0. Suppose the hypothesis of Proposition 3.1 are satis�ed. Then there
exists a constant depending on T, |x0|, b and σ such that

E
[
|X̃T −XT |2

]
≤ C

∫ T

0
|K(t)− K̃(t)|2dt. (3.7)

Furthermore, it is possible to obtain a super-polynonimal rate of convergence for
the error bound using a Gaussian quadrature rule (see [Bayer and Breneis, 2023,
Theorem 2.1] and [Bayer and Breneis, 2023, Theorem 2.14]).
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4 A ROUGH CIR VOL-OF-VOL

4 A rough CIR vol-of-vol

Let us consider a stochastic Volterra model (as in De�nition 2.1) and model the vol-
of-vol process Γ as the n-factor Markovian approximation of a rough CIR process.

The so-called rough CIR process satis�es the stochastic Volterra equation

Xt =

∫ t

0
Kα(t− s)κ(µ−Xs)ds+

∫ t

0
Kα(t− s)ν

√
XsdZs, (4.1)

where κ, µ, ν are positive constants, Z is a sBm and α ∈ (1/2, 1).

An n-factor Markovian approximation of X is given by

Γs =

n∑
i=1

wiX
i
s, (4.2)

where

dXi = ci(mi −Xi)ds+ κ(µ−
n∑
j=1

wjX
j)ds+ ν

√∑
wjXjdZ,

Xi
0 = mi,

, (4.3)

and
n∑
i=1

wimi = Γ0 > 0. (4.4)

4.1 Results for non-Lipschitz a�ne di�usion coe�cient

It is important to note that σ(x) = ν
√
x is not a Lipschitz function. Thus, the

results of the previous section do not immediately apply. Moreover, it is not even
clear if existence and uniqueness applies to (4.3). Fortunately, as shown in
[Abi Jaber, 2019], the Markovian approximation still has desirable properties
even in this case. First, we have an existence and uniqueness result.

Proposition 4.1

Let n ∈ N1. Suppose

ζ :=
n∑
i=1

wi(cimi + κµ) > 0. (4.5)

Then the SDE (4.3) has a unique continuous strong solution such that
Γt =

∑
wiX

i
t ≥ 0 for all t ≥ 0 a.s..
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4 A ROUGH CIR VOL-OF-VOL

Proof. Consider the linear curve

g0(t) = Γ0 + αt. (4.6)

Since g0 is continuous, non-decreasing and such that g0(0) ≥ 0, we can use
[Abi Jaber, 2019, Theorem A.1] to conclude there exists a unique strong solution
to the SDE

Vt = g0(t) +

n∑
i=1

wiU
i
t ,

dU it = −ciU itdt− κVtdt+ ν
√
VtdZt,

U i0 = 0.

. (4.7)

The result follows by noting that solutions to (4.3) and (4.7) are in one-to-one
correspondence through the relation

Xi
t = mi + t(cimi + κµ) + U it . (4.8)

Remark 1. Note that the condition (4.5) is not very restrictive. Indeed, the only
condition on mi (see Proposition 3.1) is that

∑
wimi = Γ0. Since wi and Γ0 are

positive, it is always possible to �nd mi that are non-negative.

Since Γ represents a vol-of-vol, we would like to obtain a Feller type of condition
so that the process remains strictly positive. We will use the following result of
[Du�e and Kan, 1996].

Theorem 4.2

Let n ∈ N1. Let W
∼

be an n-dimensional sBm, a,Σ ∈ Rn×n, b ∈ Rn. De�ne the

functions
vi(x) = αi + βi · x, (4.9)

where αi ∈ R and βi ∈ Rn. Moreover, suppose that the following conditions are
veri�ed

For all x such that vi(x) = 0, βTi (ax+ b) >
1

2
βTi ΣΣTβi (C1)

and
For all j, if (βTi Σ)j 6= 0, then vi = vj . (C2)

Then the SDE

dX = (aX + b)dt+ Σdiag(
√
v1(X, ...,

√
vn(X)) dW

∼ (4.10)

has a unique continuous strong solution for any initial condition x0 such that
vi(x0) > 0 for all i = 1, ..., n. Moreover, for any t ≥ 0 and any i, vi(Xt) > 0 a.s..
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4 A ROUGH CIR VOL-OF-VOL

The following proposition is an easy consequence of the above theorem.

Proposition 4.3

Suppose there exists j such that ζ > 1
2ν

2w2
j . Then, for all t ≥ 0, Γs > 0 a.s.

Proof. Note that (4.3) is in the form of Theorem 4.2. The matrix Σ and functions
vi are given by

Σij =

{
ν , i = j

0 , i 6= j
. (4.11)

and

vi(x) =

{∑n
i=1wixi , i = j

1 , i ≥ j
. (4.12)

For (C1), it is vacuously true for i 6= j. Now note that

βTj (ax+ b) =
∑

wi(cimi + κµ− cixi − κ
∑

wixi), (4.13)

which is equal to ∑
wi(cimi + κµ) = ζ (4.14)

if 0 = vj(x) =
∑
wixi. Condition (C1) follows by noting that

βTi ΣΣTβi = ν2w2
j . (4.15)

Condition (C2) is trivially satis�ed for i 6= j since βi = 0, i 6= j. For i = j, we
obtain the vector βTj Σ, which is equal to (0, ...0, wj , 0..., 0). Thus, (βTj Σ)k = 0
implies k = j = i, as required. Finally, vi > 0 by construction for i 6= j and Γ0

ensures vj(X0) > 0.

Recall that results like Proposition 3.2 and [Bayer and Breneis, 2023, Theorems
2.1, 2.14] relate the approximation error of the rough kernel with error measures
between the target rough process and its Markovian approximation. These kinds
of results are also available for the rough CIR process. Indeed, see
[Abi Jaber, 2019, Theorem 4.1], [Abi Jaber, 2019, Proposition 4.3],
[Bayer and Breneis, 2023, Corollary 3.7] and [Bayer and Breneis, 2023, Corollary
3.8].

4.2 The forward variance curve

Recall the conditional expectation ht de�ned in (2.7) and its connection to the VIX
described in (2.8). Suppose that Z is independent of W so that Γ is independent
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4 A ROUGH CIR VOL-OF-VOL

of W . Then, we have

ht(u) = E
[
E
[
exp

(
2

∫ u

t

√
ΓsK(u− s)dWs

) ∣∣∣Ft ∨ (Γs)t≤s≤u

] ∣∣∣Ft] (4.16)

= E
[
exp

(
2

∫ u

t
ΓsK

2(u− s) ds
) ∣∣∣Ft] . (4.17)

By virtue of (X1, ..., Xn) being Markovian, the above conditional expectation has to
be a function of (X1, ..., Xn). We wish to investigate if it is actually exponentially
a�ne. To this end, we generalize the approach of [Horvath et al., 2020, Section 4].
Fix u > t. We will build a process of the form

Ms = exp

(
2

∫ s

t
ΓrK

2(u− r) dr
)

exp

(
ϕ(u− s) +

n∑
i=1

wiψi(u− s)Xi
s

)
(4.18)

for t ≤ s ≤ u. In Section 4.4, we will see that ifM is a true martingale, we have an
exponentially a�ne formula for ht. The functions (ϕ,ψ1, ..., ψn) will be constructed
so thatM is a local martingale. To achieve this, we apply Itô's formula and obtain
a certain n-dimensional ODE that makes the drift term vanish.

4.3 Local martingale property of M

Consider the function

f(s, x) = f(s, y, x1, ..., xn) = exp

(
y + ϕ(u− s) +

n∑
i=1

wiψi(u− s)xi

)
, (4.19)

and note that
Ms = f(s, Ys, X

1
s , ..., X

n
s ), (4.20)

where

Ys = 2

∫ s

t
ΓrK

2(u− r) dr. (4.21)

We will apply Itô's formula to M . Let us compute the partial derivatives of f :

∂f

∂s
(s, y, x) = f(s, y, x)

(
−ϕ′(u− s)−

n∑
i=1

wiψ
′
i(u− s)xi

)
(4.22)

and
∂f

∂xi
(s, y, x) = f(s, y, x)wiψi(u− s). (4.23)

Hence
∂2f

∂xi∂xj
(s, y, x) = f(s, y, x)wiwjψi(u− s)ψj(u− s). (4.24)
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4 A ROUGH CIR VOL-OF-VOL

Moreover
∂f

∂y
= f(s, y, x). (4.25)

By Itô's formula, with X
∼

= (X1, ..., Xn),

df(s, Y,X
∼

)/f(s, Y,X
∼

) =

(
−ϕ′(u− s)−

n∑
i=1

wjψ
′
j(u− s)xi

)
ds

+ dY

+
n∑
i=1

wiψi(u− s)dXi

+
1

2

∑
i,j≤N

wiwjψi(u− s)ψj(u− s)d〈Xi, Xj〉.

Now by (4.3), for any 1 ≤ i, j ≤ n we have,

d〈Xi, Xj〉 = ν2
n∑
k=1

wkX
kds. (4.26)

Also
dYs = 2ΓsK

2(u− s)ds. (4.27)

Thus

df(s, Y,X)/f(s, Y,X) =

(
−ϕ′(u− s)−

n∑
i=1

wiψ
′
i(u− s)Xi

)
ds (4.28)

+ 2(
∑

wjX
j)K2(u− s)ds

+
n∑
i=1

wiψi(u− s)ci(mi −Xi)ds

+
n∑
i=1

wiψi(u− s)κ(µ−
n∑
j=1

wjX
j
s )ds

+
1

2

∑
i,j≤N

wiwjψi(u− s)ψj(u− s)ν2
∑

wjX
j
sds

+

n∑
i=1

wiψi(u− s)ν
√∑

wjX
j
sdW.

Now introduce the quadratic function

R(z1, ..., zn) = −κ
n∑
i=1

wizi +
1

2
ν2

∑
1≤i,j≤n

wiwjzizj (4.29)
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4 A ROUGH CIR VOL-OF-VOL

and the linear function

F (z1, ..., zn) =
n∑
i=1

wizi(cimi + κµ). (4.30)

We can re-arrange (4.28) and use (4.2) to obtain

dMs

Ms
= Asds+

ν n∑
i=1

wiψi(u− s)

√√√√ n∑
j=1

wjX
j
s

 dWs, (4.31)

where

As =

n∑
i=1

wiX
i
(
−ψ′i(u− s)− ciψi(u− s)

)
(4.32)

+ Γs([R(ψ1, ..., ψn)](u− s) + 2K2(u− s)) (4.33)

+ [F (ψ1, ..., ψn)](u− s)− ϕ′(u− s). (4.34)

Thus, to ensure A ≡ 0 we �rst solve the n-dimensional ODE

ψ′i = −ciψi +R(ψ1, ..., ψn) + 2K2

ψi(0) = 0
, i = 1, .., n, (4.35)

and then we �nd ϕ by solving

ϕ′ = F (ψ1, ...ψn),

ϕ(0) = 0.
. (4.36)

To avoid the singularity of K at t = 0, we can modify ODE (4.35) by considering
the auxiliary functions

yi(t) = ψi(t)− 2G(t), (4.37)

where

G(t) =

∫ t

0
K2(s) ds. (4.38)

Then ODE (4.35) becomes

y′i = −ci(yi + 2G) +R((y1 + 2G, ..., yn + 2G)) = −ciψi +R(ψ1, ..., ψn),

yi(0) = 0.
.

(4.39)

Thus, if y solves ODE (4.39) and ϕ solves ODE (4.36), we know that M is a local
martingale. That is, we obtain the following result.
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4 A ROUGH CIR VOL-OF-VOL

Proposition 4.4

Let 0 < t ≤ u be �xed time points. Let (X1, ..., Xn) solve SDE (4.3) and let Γ be
de�ned as in (4.2). Suppose (y1, ..., yn) solves ODE (4.39). De�ne the functions ψi
by ψi = yi+ 2G and suppose ϕ solves ODE (4.36). De�ne the process M by (4.18)
using these functions (ϕ,ψ1, ..., ψn). Then, M is a local martingale in [t, u].

Remark 2. Technically, the random variables and functions mentioned in the
previous proposition depend on the choice of t and u, but we omit sub and
superscripts to alleviate the notation.

Now we present su�cient conditions for the ODEs (4.39) and (4.36) to have a
solution. The result and proof are based on [Horvath et al., 2020, Proposition 3]
but adapted to the n-dimensional case.

Proposition 4.5

De�ne the functions Ri as

Ri(x1, ...xn) = −cixi +R(x1, ...xn). (4.40)

Let Λ > 0 be a �xed time horizon. Assume there exists a vector (a1, .., an) with
non-negative entries such that for all i = 1, ..., n we have

2G(Λ) + Λ max
Q

Ri ≤ ai, (4.41)

where Q is the 2n vertices set

Q = {x ∈ Rn | xi ∈ {0, ai}, i = 1, ..., n} . (4.42)

Then (4.39) and (4.36) have solutions on [0,Λ]. Moreover, we have the bounds

0 ≤ ψi := yi + 2G ≤ ai (4.43)

and
0 ≤ ϕ ≤ Λ max

Q
F. (4.44)

Proof. First note that using the function Ri, equation (4.39) can be simply written
as

y′i = Ri(y1 + 2G, ..., yn + 2G). (4.45)

We will start by considering a truncated version of the equation to obtain a solution.
Then we will use the bound in the assumption to prove this solution solves the
original equation. To simplify notation, let us de�ne the truncation function as

Ta(x) = sign(x) min(|x|, a). (4.46)

15



4 A ROUGH CIR VOL-OF-VOL

The truncated equation is de�ned as

y′i = Ri(Ta1(y1 + 2G), ..., Tan(yn + 2G)). (4.47)

The right-hand side is Lipschitz in y and continuous in t on [0,Λ]. Thus, by the
Picard-Lindelöf theorem, it has a unique solution ya on [0,Λ]. Now we prove that
this solution is actually a solution to (4.39) on [0,Λ].

We start by noting that

ψai := yai + 2G ≥ 0, i = 1, ...n. (4.48)

To arrive at a contradiction, let us suppose ψai is negative at some time in [0,Λ].
That is

A := {s ≥ 0 | ψai (s) < 0} 6= ∅. (4.49)

Let τ = inf A. Since ψai is continuous and ψi(0) = 0, it follows that ψai (τ) = 0.
Now note that, since R(0, ..., 0) = 0, we have,

d

dt
ψai (τ) = Ri(ψ

a
1(τ), ..., ψan(τ)) + 2G′(τ) = R(0, ..., 0) + 2K2(τ) > 0, (4.50)

where we consider also the caseK2(0) = +∞. But then ψai > 0 in (τ, τ+ε] for some
ε > 0. Hence τ + ε > τ = inf A is a lower bound of A, which is a contradiction.

Now note that the Hessian matrix of Ri is

H i
k,j = ν2wkwj . (4.51)

Moreover, for any vector x ∈ Rn,

xTH ix =
∑

1≤k,j≤n
wkwjxixj =

(
n∑
k=1

wkxk

)2

≥ 0. (4.52)

Thus, H i is positive semi-de�nite and hence Ri is convex. Since the domain

D = [0, a1]× [0, a2]× ...× [0, an]

is the convex hull of the vertices set Q, the maximum of the convex function Ri in
D is attained at one of the vertices in Q. Thus,

max
D

Ri = max
Q

Ri. (4.53)

By (4.48), for any s ∈ [0,Λ],

[Ta1(ya1 + 2G), ..., Tan(yan + 2G)](s) ∈ D. (4.54)
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4 A ROUGH CIR VOL-OF-VOL

Hence
Ri(Ta1(ya1 + 2G), ..., Tan(yan + 2G)) ≤ max

Q
Ri. (4.55)

Since yai (0) = 0, it easily follows that

max
[0,Λ]

yai (t) ≤ max
[0,Λ]

(yai )′ (4.56)

= Λ max
[0,Λ]

Ri(Ta1(ya1 + 2G), ..., Tan(yan + 2G)) (4.57)

≤ Λ max
Q

Ri. (4.58)

This together with assumption (4.41) implies that

yai + 2G ≤ Λ max
Q

Ri + 2G(Λ) ≤ ai. (4.59)

Thus, the function yai actually solves the original equation (4.39) on [0,Λ] and
(4.43) is veri�ed.

Finally, since F is linear, (4.36) has a unique solution on [0,Λ]. Since F (0, ..., 0) = 0,
by a similar argument to what we made above, ϕ ≥ 0 in [0,Λ]. For the upper bound,
we simply note that

ϕ ≤ Λ max
[0,Λ]

F (ψ1, ..., ψn). (4.60)

Again, using (4.43) and applying a similar argument as we did for Ri, we arrive
at the conclusion the maximum of F is attained at the set of vertices Q and thus
(4.44) follows.

4.4 True martingale property of M

Proposition 4.4 gives us conditions for M to be a local martingale. But if M is
actually a true martingale, we have an exponentially a�ne formula for ht. Such
formula allows for e�cient VIX pricing (recall Section 2.1).

Proposition 4.6

Suppose M is a true martingale. Then

ht(u) = exp

(
ϕ(u− t) +

n∑
i=1

wiψi(u− t)Xi
t

)
. (4.61)
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4 A ROUGH CIR VOL-OF-VOL

Proof. Note that since for i = 1, ..., n we have φ(0) = ψi(0) = 0, i = 1, ..., n. It
follows that

ht(u) = E [Mu | Ft] . (4.62)

Then, since M is a true martingale,

E [Mu | Ft] = Mt = exp

(
ϕ(u− t) +

n∑
i=1

wiψi(u− t)Xi
t

)
. (4.63)

The process M is in fact the stochastic exponential of a local martingale. Indeed
consider the process

Ys =

∫ s

t
Ψu(r)dΓcr, (4.64)

where
dΓcs = ν

√
ΓsdZs (4.65)

and

Ψu(s) =

n∑
i=1

wiψi(u− s). (4.66)

Since
dMs

Ms
= Ψu(s)dΓcs = dYs, (4.67)

we have
E(Y ) = M. (4.68)

In [Horvath et al., 2020], where n = 1, the authors apply Theorem 3.1 of
[Kallsen and Muhle-Karbe, 2010] to the pair (Y,Γ) to prove that M = E(Y ) is a
true martingale. The analogous way of proceeding for the general case n ≥ 1
would be to apply the same theorem to the process (Y,X1, ..., Xn). Note that Γ is
not in general an a�ne process when n > 1 but the n-dimensional process
(X1, ..., Xn) is. Unfortunately, the strong admissibility assumption of
[Kallsen and Muhle-Karbe, 2010, Theorem 3.1] fails.

Since we are working with processes with no jumps, we provide a simpli�ed
de�nition of strong admissibility ([Kallsen and Muhle-Karbe, 2010, De�nition 2.4
]) for this case.

De�nition 4.1

Let d ∈ N1. Lévy-Khintchine triplets (βj , γj , φj) are called strongly admissible in
the case φj ≡ 0 if there exists m ∈ N0,m ≤ d such that for any t ∈ R+
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1.
βkj (t) ≥ 0 for 0 ≤ j ≤ m, 1 ≤ k ≤ m, k 6= j; (4.69)

2.
γk,lj = 0 for 0 ≤ j ≤ m, 1 ≤ k, l ≤ m unless k = l = j; (4.70)

3.
βkj (t) = 0 for j ≥ m+ 1, 1 ≤ k ≤ m; (4.71)

4.
γj(t) = 0 for j ≥ m+ 1; (4.72)

Moreover,

5. βj , γj are continuous in R+ for 0 ≤ j ≤ d.

Lemma 4.7

Let t ≤ u. Let Y be as in (4.64). The process U = (X1, ..., Xn, Y ) is a Rn+1-
valued time-inhomogeneous semi-martingale with a�ne characteristics relative to
Lévy-Khintchine triplets (βj(·), γj(·), φj(·)), 1 ≤ j ≤ n+ 1.

The triplets are given as follows. First

βk0 =

{
ckmk + κµ , 1 ≤ k ≤ n
0 , k = n+ 1

. (4.73)

Then, for 1 ≤ j ≤ n,

βkj =


−κwj , 1 ≤ k ≤ n, k 6= j

−κwj − ck , k = j

0 , k = n+ 1

. (4.74)

and
βn+1 ≡ 0. (4.75)

Also
φj ≡ 0. (4.76)

Finally
γ0 ≡ γn+1 ≡ 0, (4.77)

γkj (s) =

{
γ̂j(s) , 1 ≤ k ≤ n
Ψu(s)γ̂j(s) , k = n+ 1

, (4.78)
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where γkj (s) denotes the k-th row of γj(s) and γ̂j is the R1×d valued function

γ̂j(s) = ν2wj [1, ..., 1,Ψu(s)]. (4.79)

Furthermore, these triplets are strongly admissible if and only if n = 1.

Proof. Let d = n + 1. By construction, the process U is a Rd-valued a�ne semi-
martingale. Let us compute the Lévy-Khintchine triplets. Consider the function

p(x) = p(x1, ..., xn) = ν

√√√√ n∑
j=1

xj . (4.80)

Note that
dXi = Di(X

∼
)dt+ p(X

∼
)dZ, i = 1, ..., n. (4.81)

where Di(X
∼

) is the drift coe�cient in (4.3). Moreover,

dYs = Ψu(s)p(X
∼

)dZs. (4.82)

Consider now the matrix valued function σ : Rd → Rd×d given by

σ(x, y, s) =

{
σ̂(x, y) , 1 ≤ i ≤ n
σ̂(x, y)Ψu(s) , i = n+ 1

, (4.83)

where σi(x, y, s) denotes the i-th row of σ(x, y, s) and the σ̂ is the R1×d valued
function

σ̂(x, y) = [0, ..., 0, p(x)]. (4.84)

Then
dUs = R(Us)ds+ σ(U, s)dBs

∼
, (4.85)

where B
∼

= (B1, ..., Bd) is a d-dimensional sBm with Bd = Z and

Ri(x, y) =

{
Di(x, y) , 1 ≤ i ≤ n
0 , i = n+ 1

= βi0 +

n∑
j=1

xjβ
i
j + yβin+1, (4.86)

with βj as in (4.73), (4.74) and (4.75). Consider

a(x, y, s) := σ(x, y, s)Tσ(x, y, s). (4.87)

Then

ai(x, y, s) =

{
â(x, y)Ψu(s) , i = 1

â(x, y) , i ≥ 2
, (4.88)
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where ai(x, y, s) denotes the i-th row of a(x, y, s) and â is the R1×d valued function

â(x, y, s) = p2(x)[Ψu(s), 1, ..., 1]. (4.89)

So

a(x, y, s) = γ0(s) +
n∑
j=1

xjγj(s) + γn+1(s)y, (4.90)

with γj as in (4.77) and (4.78).

Now we verify the admissibility conditions.

Note that the matrices γj for 1 ≤ j ≤ n do not have any non-zero entries. Thus,
the only choice of m that allows to satisfy (4.72) is m = n. So let us choose
m = n. Since again the matrices γj for 1 ≤ j ≤ n do not have any non-zero
entries, condition (4.70) is satis�ed if and only if it is the empty condition. This
occurs only for n = 1. Thus, the triplets are not admissible for n > 1. To see
they are admissible for n = 1, we only need to verify the other three conditions.
Condition (4.69) reduces to β1

0 ≥ 0, i.e. c1m1 + kµ ≥ 0, which is satis�ed since
m1 = X1

0 = Γ0/w1 ≥ 0 and c1, κ, µ ≥ 0. Condition (4.71) is satis�ed by virtue of
(4.75). Finally, (4.1) is satis�ed as the functions βj are constant and the functions
γj are continuous.

Remark 3. If we try to use the process (Y,X1, ..., Xn) instead, we will obtain γ1 = 0
but all the entries of matrices γ2, ..., γn+1 will be non-zero. Thus, condition (4.72)
will fail unless m = d. But if we choose m = d, condition (4.70) will fail, as for
instance γ1,1

n+1 will not be zero. Similar e�ects happen for di�erent reshu�ings.

Under the no jump assumption φj ≡ 0, all conditions in
[Kallsen and Muhle-Karbe, 2010, Theorem 3.1] are trivially satis�ed except for
the third one. We state the simpli�ed version of this theorem under the no jump
assumption.

Theorem 4.8

Let d ∈ N1 and X be an Rd-valued semimartingale with a�ne characteristics
relative to strongly admissible Lévy-Khintchine triplets (βj , γj , φj), with φj ≡ 0.
Suppose that for some 1 ≤ i ≤ d and T ∈ R+ the following condition holds

βij(t) = 0 ∀ j = 0, ..., d, t ∈ [0, T ]. (4.91)

Then the stopped process E(Xi)T is a (true) martingale.

Remark 4. Condition (4.91) is satis�ed for the process (X1, ..., Xn, Y ) with i = n+1
as a consequence of Eqs. (4.73) to (4.75).
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5 Conclusions

The Markovian approximation of non-Markovian Volterra processes is a powerful
tool which allows the treatment of otherwise too complex processes. It allows to
tackle models which are in general analytically untractable and often also
numerically too costly. There are multiple techniques to construct such
approximations which have been recently presented in the literature.

One application of Markovian approximations is to allow for a process mimicking
rough vol-of-vol. We study this approximation for the rough CIR case. The
Markovian approximation is written as a weighted sum of mean reverting
processes driven by a common Brownian motion. With VIX pricing in mind, we
explore the problem of �nding an expression for the conditional expectation of
the exponential stochastic Volterra process. To do this, we build a process M and
a Riccati ODE. If the process M is a true martingale, the aforementioned
conditional expectation can be written in terms of the solution of the Riccati
ODE. This in turn allows for e�cient VIX simulations and pricing. We provide
su�cient conditions for the existence of solutions for the Riccati ODE, and prove
that M is a local martingale.

The question of whether M is a true martingale is left for future research. We still
o�er a brief treatment of it in this paper. We explore an approach which is known to
work for the non-rough CIR process. This approach involves a strong admissibility
on the Lévy-Khintchine triplets of a certain associated process. We arrive at the
conclusion that in general the Lévy-Khintchine triplets are not strongly admissible,
except when the Markovian approximation is made of a single component.
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