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João A. Bastos*, Maria Inês Bernardes
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Abstract

Customer profiling in e-commerce is a powerful tool that enables organizations to create

personalized offers through direct marketing. One crucial objective of customer profiling

is to predict whether a website visitor will make a purchase, thereby generating revenue.

Machine learning models are the most accurate means to achieve this objective. However,

the opaque nature of these models may deter companies from adopting them. Instead, they

may prefer simpler models that allow for a clear understanding of the customer attributes

that contribute to a purchase. In this study, we show that companies need not compromise

on prediction accuracy to understand their online customers. By leveraging website data

from a multinational communications service provider, we establish that the most pertinent

customer attributes can be readily extracted from a black-box model. Specifically, we show

that features measuring customer activity within the e-commerce platform are the most

reliable predictors of conversions. Moreover, we uncover significant non-linear relationships

between customer features and the likelihood of conversion.

Keywords: Customer Profiling; Conversion; Direct marketing; Explainable artificial intelligence;

SHAP value; Accumulated local effects.

1 Introduction

Customer profiling in e-commerce is a valuable tool for understanding customer behavior during

their interactions with a company’s website. This knowledge empowers organizations to create

personalized offers through direct marketing. A key objective of customer profiling is to under-

stand whether a website visitor will purchase one or more products, thereby generating revenue.

When a customer generates revenue we say that the browsing session resulted in a “conversion”

or, alternatively, that the customer has “converted”. To predict the likelihood of conversion we

*Corresponding author. E-mail: jbastos@iseg.ulisboa.pt.
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can analyze the navigational patterns of visitors and their engagement with the content provided

by the online platform. For registered users, sociodemographic data and the historical behavior

may also define the customer profile. Furthermore, certain web design features may influence

the probability of conversion (McDowell et al., 2016).

One of the most direct approaches to creating a customer profile is by using clickstream

data – the unique fingerprint of customers as they navigate a website. Previous studies have

demonstrated that the manner in which visitors interact with a website plays a significant role in

determining their likelihood of generating revenue. For example, Moe (2003) conducted a study

showing that visitors to an online store can be categorized based on their observed navigational

patterns. Similarly, Moe and Faden (2004) showed that a parametric model incorporating dy-

namic behavior derived from clickstream data can predict the probability of a purchase. Another

study by Sismeiro and Bucklin (2004) suggested that decomposing the purchase process into a

sequence of tasks also aids in predicting the likelihood of a purchase.

Clickstream data provide information about the traffic origin, the time visitors spent on a

given page, which content they engaged with, and where they went next. Information about the

browsing device and the operating system is usually also available. Once a customer profile is

established, we can use it to predict the probability that she will generate revenue. This is a

binary classification problem – the task of identifying which of two classes an individual belongs

to. Here, we want to classify customers into the class of those that have converted and the class

of those who have not. This decision is based on their profiles. Most classification algorithms

provide a number bounded to the interval [0,1] called the score. If the class of customers who

have converted is encoded as 1, and the class of those who have not is encoded as 0, a well-trained

classifier will provide scores close to 1 for customers with high likelihood of conversion.

The most simple tool to model the probability of conversion are binary choice models, such

as the logistic regression. This model specifies that probability as the logistic function of a linear

combination of the predictors. Because the maximum likelihood estimators of the parameters are

asymptotically normal, this model has good inference properties and customer conversions can

be easily explained in terms of the customer attributes. Goodness-of-fit measures, such as the

likelihood ratio, are also provided by the optimization procedure. Van den Poel and Buckinx

(2005) use logistic regression to predict whether or not a purchase is made during the next

customer visit to a wine retailer website. They use clickstream data, customer demographics

and past purchase behavior as predictors. The estimated Wald statistics for the coefficients and

the score chi-squared statistics let them identify the most important predictors using variable

selection procedures. Olbrich and Holsing (2011) use a logistic regression model to understand

which factors are most significant for predicting consumer purchasing behavior within social

shopping communities. Lo et al. (2016) also use a logistic regression to predict the intention to

purchase by tracking user activity on a content discovery platform.

Due to its fixed functional form, the logistic regression does not have enough flexibility to fit

complex data and is often less accurate than the more sophisticated machine learning models,
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such as ensemble methods and deep neural networks (James et al., 2021). Furthermore, the

low visit-to-purchase rate (Statistica Inc., 2022) means that small improvements in identifying

those customers more likely to buy can lead to substantial increases in sales revenue. Therefore,

several studies explored machine learning models to predict customer conversions in e-commerce

platforms. For instance, Kim et al. (2003) compare different strategies for combining the outputs

of three neural networks trained to predict purchases. They find that a combination strategy

based on a genetic algorithm provides the best accuracy. Mokryn et al. (2019) train different

ensembles of decision trees to understand how the popularity of a product affects the likelihood

to purchase it at the end of a visit. Esmeli et al. (2020) use ensembles of decision trees to predict

the customer’s buying intention from the first interactions with the online platform. Mart́ınez

et al. (2020) train a gradient boosting machine and a feed-foward neural network to predict if a

customer is going to purchase within a certain time frame in the near future. Chaudhuria et al.

(2021) consider online engagement and demographic attributes to train deep neural networks for

predicting the customer’s decision to purchase. Esmeli et al. (2022) use ensembles of decision

trees, deep neural networks and contextual customer characteristics – such as location, operating

system, time of the visit, and previous browsing data – to predict the purchase intention before

the user interacts with the e-commerce platform.

Due to the “black-box” nature of machine learning models, companies may be reluctant to

use them for marketing purposes. If a model is opaque and the most relevant customer attributes

are not understood, then it may fail to deliver actionable insights. Therefore, companies may

prefer to sacrifice prediction accuracy and use simpler models where the customer attributes

that led to a purchase are easily understood. In this study, we show that companies do not have

to sacrifice prediction accuracy to understand their customers. Using website data from a multi-

national communications service provider we show that the most relevant customer attributes

can be easily extracted from a black-box model. Therefore, the marketing team is provided with

the most relevant information to elaborate personalized offers without compromising targeting

efficiency, while maximizing the return on investment. This information also improves the com-

munication with the customer, promotes a more efficient use of resources by the company, and

helps improving the e-commerce channel. To the best of our knowledge, this is the first study

analyzing online purchasing decisions in the telecommunications sector. The navigation data

is obtained from Google Analytics, a tool that measures what happens in a website, providing

audience and acquisition reports. Audience reports provide data regarding device technology,

and visitor age, gender and region. Acquisition reports provide information about how the users

reached the website and the origin of their traffic. Our black-box model is a gradient boosting

machine (Friedman, 2001; Chen and Guestrin, 2016). This is a powerful nonparametric model

consisting of a “committee” of decision trees. It is one of the best off-the-shelf algorithms for a

wide range of predictive problems and a winner of major data science competitions (Chen and

Guestrin, 2016).

First, we show that the gradient boosting machine has better performance than the para-
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metric logistic regression in our dataset, since it is better at discovering complex dependencies in

the data. Then, we propose three model-agnostic techniques for explaining the decisions of the

black-box model. The first is based on random permutations of the predictor variables. In this

approach, we randomly permute the values of a given variable, train the model, and evaluate

how the prediction error changes. The random permutation breaks the relationship between this

variable and the output. A regressor is “important” if, after shuffling its values, the model error

increases substantially, and “unimportant” if the model error does not change significantly. The

second technique is Shapley additive explanations (Lundberg and Lee, 2017; Lundberg et al.,

2020), which is based on cooperative game theory. This approach evaluates the importance of a

predictor by measuring its impact on the model predictions when it is present in or absent from

all possible ‘coalitions’ of predictors. The third technique is the accumulated local effects plot

(Apley and Zhu, 2020). It does not evaluate the overall importance of a regressor but provides

a visualization of how the target variable changes with the input variables. For instance, it indi-

cates whether this change is positive or negative, linear or non-linear, convex or concave. Using

these techniques we show that the black-box model identifies important relationships between

customer features and the probability of conversion that the logistic regression model ignores.

For instance, we learn that for the black-box model, the attributes measuring customer activity

in the e-commerce platform – such as the average pageviews per day and the number of distinct

days in which there were visits – are the best predictors of conversions. Furthermore, the ac-

cumulated local effects plots uncover highly nonlinear relationships between predictors and the

probability of conversion.

The remainder of this paper is structured as following. The next section describes the dataset

used in this study. This is followed by an explanation of the variable selection procedure.

In Section 4, we describe the models for predicting customer conversions and evaluate their

performance. Section 5 compares the most important determinants of conversions according to

the black-box and logistic regression models. Section 6 provides some concluding remarks.

2 Data

The dataset used in this study was obtained from a multinational telecommunication services

provider. The data are statistics collected by Google Analytics on the company’s website.

This service measures user traffic and engagement across websites and apps, such as session

duration, pages per session, visited pages, and browsing device (Cutroni, 2010). A session

is a unique visit to the website. The collected data are structured into several reports, each

describing different information about the user’s browsing behavior. Each report contains a

unique customer identifier that allows merging information across different reports.

Each entry in our dataset describes the browsing behavior of a unique customer in the studied

period. The first set of variables are related to the origin of the website traffic generated by

a given customer. The origin of the traffic is characterized by a “source/medium” pair – for
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instance, “Google/cost-per-click paid search” or “Bing/organic search”. For each customer we

recorded the following variables during the period under study:

� total number of entrances from each source/medium pair;

� total number of pageviews for sessions originating from each source/medium pair;

� average time on pages for sessions originating from each source/medium pair;

� total number of distinct source/medium pairs used by the customer.

Then, for specific pages in the company website we recorded:

� the total number of pageviews in the analyzed period;

� the total number of times the customer started a browsing session on the page;

� average time spent on the page.

In particular, we constructed these variables for special pages, such as those showing equipment

content (e.g., smartphones, tablets, and accessories), showing special campaigns, and related to

customer loyalty programs.

We also recorded information regarding the device category and operating system used to

access and navigate through the website. Device category is either desktop, mobile, or tablet.

The operating system variable is either Windows, OSX, Linux, Android or iOS. For each user

we created a dummy variable indicating whether a given device/OS pair was used in the an-

alyzed period, and the total number of pageviews from each device/OS pair. In addition to

the variables obtained from the company’s digital channel, we also included variables describing

sociodemographic characteristics, service engagement, and whether the customer was targeted

by campaigns.

Finally, we obtained information about the total revenue generated by the user in the ana-

lyzed period. This revenue includes both purchases in the company website and in-app transac-

tions. Since we are interested in understanding the likelihood of conversion, we created a dummy

variable indicating whether the user converted (i.e., generated revenue) or not. Customers who

have converted were encoded as 1, and those who have not were encoded as 0. The final dataset

contains almost 250 variables describing around 7,000 customers who have converted. The con-

version rate is about 4%. This value is higher than the 2.1% rate for online shoppers in the United

States observed in the first semester of 2022 (Statistica Inc., 2022). Because the two classes are

rather unbalanced we have tested several undersampling and oversampling techniques, but these

results are omitted for brevity as those techniques have not improved the accuracy of the models.
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3 Selection of customer features

The first step to understand which predictors – or customer “features” – are the most impor-

tant, in the sense of having the greater discrimination power of the target variable, is through

univariate analysis. This step allows us to select the most relevant customer features to be

included in the model, making it more robust, and less prone to overfit the training data. It

also reduces the computational complexity of the model and increases its scalability for deploy-

ment. The “weight of evidence” and “information value” are two common tools for exploratory

data analysis and variable screening when dealing with binary classifiers. These metrics let us

identify which variables are ill-conditioned or do not contain useful information to predict the

target variable.

Suppose that the observations belong to two classes: the positive and the negative. In binary

classification, the positive class usually corresponds to the ‘presence of something’, which in our

analysis is the conversion of a customer. The weight of evidence (WoE) tells us how confident

we are that a variable X will help us discriminate the two classes. It compares the empirical

density function of X for the two classes at different bins,

WoEk = log
f(Xk|+)

f(Xk|−)
, k = 1, . . . ,#bins. (1)

If X has low discrimination power, f(X|+) and f(X|−) will overlap significantly. Therefore,

f(Xk|+)/f(Xk|−) ≈ 1 and WoEk ≈ 0 across all bins k. On the other hand, if X separates

well the two classes, we will observe bins with different proportions of positive and negative

observations, and obtain values for WoE deviating from zero.

The information value (IV) aggregates the values of WoE at different bins into a single metric

IV =

#bins∑
k=1

WoEk × [f(Xk|+)− f(Xk|−)] . (2)

Note that the term f(Xk|+)− f(Xk|−) has the same sign of WoEk, hence ensuring that the IV

is always a positive number. The IV ranks the predictors in terms of discrimination power of

the two groups, indicating which should be included in the model. A heuristic rule states that

predictors with ‘medium’ discrimination power have IV greater than 0.1, whereas those with

strong discrimination power have IV greater than 0.3.

For the modeling phase we selected the set of 17 variables with IV greater than 0.2. These

are reported in Table 1. Variables that measure how active a customer was in the analyzed

period are those that better discriminate the customers that have converted from those who

have not. Indeed, they reflect interest and engagement of the user with the website content.

For instance, the variable that better discriminates the two groups is the average pageviews per

day. Variables such as the total number of pageviews, total number of pageviews related to

equipment or brands, the average time a user spends visualizing pages, the number of distinct
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Variable Name Variable Description IV
Avgpageviews day Average number of viewed pages per day 1.56
Equip pageviews total Total number of viewed pages related to equipment content 1.22
Pageviews total Total number of viewed pages 0.97
Average time page total Sum of average time spent on page 0.86
Purchase method 1 1 if the user searched for the type 1 purchase method; 0 otherwise 0.73
Equip type1 pageviews Total number of viewed pages of related to equipment of type 1 0.62
Distinct days Number of distinct days on which the user accessed the website 0.59
Distinct sources Number of distinct sources/mediums from which the user accessed the

website
0.54

Equip type1 avgtime sum Sum of average time spent on equipment type 1 related pages 0.41
Source1 pageviews Number of viewed pages through the source/medium of type 1 0.41
Purchase method 2 1 if the user searched for the type 2 purchase method; 0 otherwise 0.35
Brand2 pageviews Number of viewed pages related to brand 2 0.30
Equip type2 pageviews Number of viewed pages related to equipment type 2 0.27
Brand1 pageviews Number of viewed pages related to brand 1 0.21
Equip pageviews other Number of viewed pages not related to the equipment categories 0.21
Equip type1 entrances Total number of entrances in equipment type 1 related pages 0.21
Purchase method 3 1 if the user searched for the type 3 purchase method; 0 otherwise 0.20

Table 1: Description and information value (IV) of predictor variables to be included in the
models. These variables have the highest discrimination power for predicting customer conver-
sions according to the IV criterion.

days on which the user accessed the website are also important. The most surprising fact is

that many customer features unrelated to browsing behavior do not discriminate well between

customers that have converted from those who have not. The only features of this type that do

so are the dummy variables indicating if the user searched in the company’s website for any of

the three payment methods. If a user has decided to purchase it is natural that she will search

for available payment options. Less surprising is the fact that neither the browsing device nor

the operating system have a significant impact on conversions.

4 Models

4.1 Logistic regression

The logistic regression is one of the most simple binary classification models. Let Y denote a

Bernoulli random variable that equals 1 if the customer converted and 0 otherwise. The logistic

regression explains the probability that a client will convert as a function of the logistic function

of a linear combination of variables X = {X1, X2, . . . , Xp} describing the customer features,

Pr (Y = 1|X) =
1

1 + exp [−(β0 + β1X1 + β2X2 + . . .+ βpXp)]
, (3)

where β = {β0, β1, . . . , βp} is a vector of coefficients. If the observations from the two classes are

not linearly separable in the regressor space, it is possible to estimate β by maximization of a

Bernoulli log-likelihood function. The estimators for β have good inference properties because

they are asymptotically distributed according to a normal distribution. To convert a logistic
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regression model into a classifier, we impose a threshold value on Pr (Y = 1|X). If a given

customer has Pr (Y = 1|X) ≥ 0.5, we predict that he will convert.

Coefficient Std. error z-stat p-value

Constant -4.860 0.034 -143.002 0.000
Brand2 pageviews -0.002 0.006 -0.376 0.707
Purchase method 2 0.395 0.037 10.685 0.000
Equip type1 avgtime sum -0.014 0.019 -0.751 0.453
Source1 pageviews 0.010 0.001 11.673 0.000
Distinct sources 0.218 0.014 15.776 0.000
Distinct days 0.084 0.007 12.958 0.000
Equip type1 pageviews -0.006 0.005 -1.178 0.239
Purchase method 1 1.111 0.037 29.746 0.000
Average time page total 0.128 0.008 16.067 0.000
Pageviews total -0.013 0.001 -11.671 0.000
Equip pageviews total 0.016 0.003 4.792 0.000
Avgpageviews day 0.038 0.001 30.259 0.000
Purchase method 3 0.534 0.055 9.727 0.000
Equip type1 entrances -0.040 0.012 -3.225 0.001
Brand1 pageviews 0.007 0.005 1.383 0.167
Equip pageviews other -0.036 0.008 -4.483 0.000
Equip type2 pageviews 0.073 0.011 6.946 0.000

Table 2: Output of the logistic regression model.

Table 2 shows the estimated logistic regression model for our data. Because the logistic

function is strictly monotonic, the sign of the coefficient provides the direction of the partial

effect. For instance, the variable “Source1 pageviews”, measuring the number of viewed pages

for visitors coming from source/medium 1, has a positive impact on the probability of conversion.

Surprisingly, the variable “Pageviews total”, that measures the total number of viewed pages in

the analyzed period, and the variable “Equip pageviews other” that measures the total number

of viewed pages of equipment that are not within the main categories (smartphones, accessories,

tablets, for example) have a negative impact on the probability of conversion, when we control

for other variables.

The last column gives the p-value for the null hypothesis that regressorXj has no effect on the

probability of conversion: H0 : βj = 0 vs. H1 : βj ̸= 0. For the usual significance levels, there are

4 regressors that have no effect on conversions (when we control for other variables in the model).

“Type 1” is a popular type of equipment. In the multivariate model, when we control for the num-

ber of entrances in pages showing content for this type of equipment (Equip type1 entrances),

the sum of average time spent on these pages (Equip type1 avgtime sum) and the total number

of viewed pages (Equip type1 pageviews) are not statistically significant. The pages related to

specific brands (Brand1 pageviews and Brand2 pageviews) also become not significant when we

control for other variables that measure user activity.

To measure the importance of variables on conversions we should not only consider their sta-

tistical significance but also the magnitude of the corresponding coefficients. However, looking

at these coefficients alone ignores the variation of the explanatory variables in the data. Table 3
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Customer feature Std. dev. Importance

Avgpageviews day 9.014 0.343
Purchase method 1 0.288 0.320
Average time page total 2.034 0.260
Pageviews total 17.434 0.227
Distinct days 2.411 0.202
Distinct sources 0.918 0.200
Purchase method 2 0.326 0.129
Equip pageviews total 7.605 0.120
Source1 pageviews 10.102 0.103
Purchase method 3 0.160 0.085
Equip type2 pageviews 0.880 0.065
Equip pageviews other 1.233 0.045
Equip type1 entrances 0.874 0.035

Table 3: Sample standard deviation of the statistically significant variables, and customer feature
importance given by the logistic regression model. Feature importance is measured as the
product of the absolute value of the estimated coefficients with the sample standard deviation
of the corresponding predictors.

shows the sample standard deviation of the statistically significant variables in the model. Vari-

ables such as the average pageviews per day or the total pageviews in the analyzed period have

a large variation in the data. On the other hand, dummy variables such as those indicating if

a payment method was searched by the user have lower variation. An approximate measure of

variable importance is the product of the absolute value of the coefficient estimates with the

sample standard deviation of the variables in the data,

Importance of variable j = |βj| ×

√√√√ 1

n− 1

n∑
i=1

(
Xji − X̄j

)
, (4)

thereby accounting for the difference in variance between the variables (Maśıs, 2021). The last

column in Table 3 shows the customer feature importance given by this metric. For the logistic

regression model the average number of viewed pages per day is the most important determinant

of the probability of conversion. If a user has decided to purchase, she might search for available

payment options. According to the logistic regression the “Purchase method 1” is the purchase

option that leads to more conversions. On the other hand, user activity on specific pages related

to equipment are the least important features for this model.

4.2 Extreme gradient boosting machine

Our black-box model is a “gradient boosting machine” (Friedman, 2001). Boosting machines

combine several base models to produce a powerful “committee” of models. Typically, the base

models are decision trees (Breiman et al., 1983; Quinlan, 1986) – a set of if-then-else conditions

on the features of the observations that lead to a decision. For instance, a hypothetical branch

of a decision tree may be:
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IF Avgpageviews day > 15 AND Distinct days > 5 THEN customer converts.

A typical decision tree may have hundreds of these branches, each with dozens of sequential

tests on the features.

The prediction of a gradient boosting machine Ŷ is the sum of the predictions given by a set

of K decision trees {fk(X)}Kk=1,

Ŷ =
K∑
k=1

fk(X). (5)

The first tree, f1(X), is a normal decision tree trained on the original data. The following

decision trees, {fk(X)}Kk=2, are added sequentially to the committee. But each added tree is

trained on the residuals generated by the trees that are already in the committee – it “corrects”

the errors made by the current committee. A well-known implementation of gradient boosting

is eXtreme Gradient Boosting, also known as XGBoost (Chen and Guestrin, 2016). This is one

of the best off-the-shelf algorithm for a wide range of predictive tasks. Indeed, about 60% of the

winning solutions posted on Kaggle during 2015, and the best solutions in the KDD Cup 2015

used XGBoost (Chen and Guestrin, 2016). We optimized the ‘hyper-parameters’ (parameters

that are not learned in the training process) of our XGBoost model using grid-search.

4.3 Evaluating model performance

To evaluate the performance of the models we consider the F1-score and the area under the ROC

curve, since these metrics are more appropriate in scenarios where the classes are unbalanced

(Jeni et al., 2013). Let TP denote the “True Positives” – customers who have converted and

were correctly classified as such –, FP denote the “False Positives” – customers who have not

converted, but were incorrectly classified as having converted –, TN denote the “True Negatives”

– customers who have not converted and were correctly classified as such –, and FN denote the

“False Negatives” – customers who have converted, but were incorrectly classified as not having

converted. “Recall” (or true positive rate) measures the proportion of positive observations that

were correctly identified,

Recall =
TP

TP + FN
. (6)

“Precision” is the ratio between the number of correctly predicted positives and the total number

of observations predicted as positive,

Precision =
TP

TP + FP
. (7)

The F1-score combine the precision and recall metrics into a single metric. Because precision

and recall are rates the F1-score is defined as their harmonic mean,

F1-score =
2× Recall× Precision

Recall + Precision
. (8)
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A Receiver Operating Characteristic (ROC) curve plots the true positive rate (or recall)

against the false positive rate

FPR =
FP

FP + TN
, (9)

as we vary the threshold value on Pr (Y = 1|X) that is used to classify an observation as positive.

A classifier that cannot discriminate well the two classes will have a true positive rate similar to

the false positive rate as we vary this threshold. The ROC “curve” will be a straight line with a

slope of 1, and the area under this curve will be about 0.5. A classifier with good discrimination

power will have a true positive rate greater than the false positive rate regardless of the threshold

value, and the area under the ROC curve will be greater than 0.5. The higher the area under

the ROC curve the better is the discrimination power of the classifier. A perfect classifier would

have an area under the ROC curve of 1.

Classifier Precision Recall F1-score AUC
Logistic Regression 0.46 0.08 0.14 0.86
Gradient boosting machine 0.28 0.43 0.34 0.88

Table 4: Model performance metrics on the validation data.

We randomly split the data into a training set with 80% of the original data and a validation

set with 20% of the original data, ensuring that the proportion of conversions was roughly equal

in both samples. The validation data is used to estimate the out-of-sample accuracy. Table 4

shows the out-of-sample precision, recall, F1-score and AUC in the validation data for the logistic

regression and the gradient boosting machine. The precision and recall were calculated using a

cutoff value on Pr (Y = 1|X) of 0.5. Of course, the optimal cutoff value is an empirical matter –

it is defined by the amount of false positives and false negatives expected by the marketing team.

Looking at the precision metric we could suspect that the logistic regression is the best model.

But the high precision comes at the cost of a poor recall – the logistic regression generates many

false negatives, failing to detect customers that have actually converted. When we combine these

metrics into the F1-score, the gradient boosting machine is the clear winner. The AUC metric

gives a precision metric that is independent of the cutoff value on Pr (Y = 1|X). According to

this metric, the gradient boosting machine is the best model.

4.4 Gain and lift analysis

In addition to evaluating the performance metrics above, it is convenient to inspect how a

predictive model benefits the business when compared to a situation in which the model is

not used, that is, when the customers are randomly targeted. Gain and lift analysis is often

used in marketing to evaluate a campaign performance, also helping to identify who the best

customers are, thereby improving the prospect of future campaigns. To calculate the gain and

lift, we calculate the scores given by the model for all customers in the test data. We recall

that the score gives the probability that a customer converts. Then, we sort those scores by
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descending order. Afterwards, we divide the data into deciles. Finally, we calculate the number

of conversions in each decile and the cumulative number of conversions up to a decile. The gain

is calculated as

Gain =
Cumulative number of conversions up to a decile using model

Total number of conversions in the data
, (10)

whereas the lift is computed as

Lift =
Cumulative number of conversions up to a decile using model

Cumulative number of conversions up to a decile using random guessing
. (11)

decile # cases # responses cumulative % events gain lift

1 3696 859 859 59.16 59.16 5.92
2 3696 277 1136 19.08 78.24 3.91
3 3695 136 1272 9.37 87.61 2.92
4 3696 69 1341 4.75 92.36 2.31
5 3695 54 1395 3.72 96.08 1.92
6 3695 32 1427 2.2 98.28 1.64
7 3697 21 1448 1.45 99.73 1.42
8 3233 4 1452 0.28 100.01 1.25
9 4089 0 1452 0 100.01 1.11
10 3765 0 1452 0 100.01 1.00

Table 5: Gain and lift values given by the gradient boosting machine for the test data.

Table 5 shows the gain and lift values given by the gradient boosting machine for the test data.

Suppose that we consider the 10% of observations with highest scores. This sample contains

about 59% of the customers who converted. Likewise, if we consider the 20% of observations

with highest scores, we cover about 78% of the customers who converted. In business terms,

this means that if those 20% of customers are targeted we expect that about 78% of them will

convert. Regarding the lift, the value for the second decile is 3.91, which means that by covering

20% of the data using the gradient boosting machine, the probability to predict customers who

converted is 3.91 times higher than by randomly selecting 20% of the data, that is, without using

the model.

5 The determinants of conversions

The previous section shows that the gradient boosting machine is more accurate than the logistic

regression. On the other hand, we also remarked that it is rather straightforward to understand

which variables contribute the most to the predictions provided by the logistic regression. If we

wish to understand which variables contribute to the predictions of a black-box model, we need

to use techniques for explaining machine learning models. These methods are also known as

eXplainable Artificial Intelligence (XAI) techniques.
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5.1 Permutation feature importance

Perhaps the most straightforward approach to measure the importance of a predictor to a model

output is to randomly permute its values, and observe the deterioration in the model accuracy.

The random permutation breaks the relationship between the inputs and the output. An input

is “important” if, after shuffling its values, the model accuracy decreases considerably, and

“unimportant” if the model accuracy does not change significantly. If the accuracy decreased,

then the model relied on the variable in question to generate its predictions. On the other hand,

if the accuracy does not change, the model “ignored” that variable.

Figure 1: Permutation feature importance for the gradient boosting machine. The vertical
axis shows the selected determinants of customer conversions, and the horizontal axis gives the
variable importance.

Figure 1 shows the customer features by decreasing order of importance when we apply this

technique to our gradient boosting machine. The total number of viewed pages related to equip-

ment (Equip pageviews total) is by far the most important customer attribute for determining

conversions. In contrast, this attribute is only the 8th most important variable for the logistic

regression (Table 3). “Purchase method 1” is the second most important feature for both models.

Average pageviews per day is the 3rd most important feature for the gradient boosting machine,

whereas it is the most important for the logistic regression. On the other hand, the variables

that are not statistically significant at usual significance levels for the logistic regression appear

at the bottom of the permutation feature importance chart.
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5.2 Shapley additive explanations (SHAP)

Permuting the values of a predictor also destroys the relationship with other covariates. There-

fore, importance measures based on permutation also take into account the effect of variable

interactions. This may be a disadvantage of this method, since the strength of the interaction

between two variables contributes to the importance of both variables. SHapley Additive exPla-

nations (SHAP) (Lundberg and Lee, 2017) is a technique for explaining black-box models that

does not assume independence of the predictors. It is based on Shapley values – a concept for

predicting which strategies are adopted by players in a cooperative game. Shapley values give a

solution to the following problem: a coalition of players cooperates to obtain a certain gain from

that cooperation; however, some players may contribute more to that gain than others; how to

fairly distribute the gain among the players in any particular game?

Lundberg and Lee (2017) adapted Shapley values to evaluate the importance of the input

variables of a black-box model. In their framework, the game is predicting the model output for

an observation, the players are the input variables that collaborate to receive the final gain, the

importance of an input variable is measured by how much it contributes to the model output,

and the final gain is the prediction minus the average prediction for all observations. Feature

importance is measured by the extent to which it affects model predictions when it is present or

absent from all possible ‘coalitions’ of regressors. This approach is computationally expensive

when the number of variables is high, and the algorithm must be modified to obtain approximate

SHAP values more quickly. However, Lundberg et al. (2020) proposed a variation of the original

algorithm that computes exact SHAP values quickly when the machine learning model is based

on decision trees, as is the case here.

The results of a SHAP analysis can be summarized in a “SHAP summary plot”, where the

vertical axis shows the model inputs, ordered by their importance, and the horizontal axis repre-

sents the SHAP values for each observation. The shade of the dots represents the feature value,

allowing us to analyze the sign of the relationship between this feature and the model output.

If the points extending towards the right are increasingly darker (lighter), the variable has a

positive (negative) effect on conversions. Figure 2 shows the SHAP summary plot given by the

gradient boosting machine for the customer attributes. Comparing the SHAP summary plot

for the gradient boosting machine with the most important inputs for the logistic regression,

shown in Table 3, we note that there is a reasonable agreement on which customer features

have a greater impact on customer conversions. For both models, the most important variable

is the average pageviews per day. The effect of this variable on the probability of conversion is

positive, meaning that customers that are consistently more active in the company website are

more likely to purchase. Furthermore, the variables that are not statistically significant at usual

significance levels for the logistic regression appear at the bottom of the SHAP summary plot.

However, there are also some disagreements. For example, the total number of viewed pages

related to equipment (Equip pageviews total) and the number of viewed pages by customers

originating from source/medium of type 1 (Source1 pageviews) are the 2nd and 4th most im-
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Figure 2: SHAP summary plot for the gradient boosting machine. The vertical axis shows the
selected determinants of customer conversions, and the horizontal axis gives the Shapley values
for each website visitor.

portant variables for the gradient boosting machine, respectively, but appear in the bottom half

of the most important variables for the logistic regression. Perhaps more surprising are some

differences between SHAP and the feature permutation technique (Figure 1). For instance, av-

erage pageviews per day is only the third most important feature according to the permutation

technique. This indicates that some customer features interact to jointly determine the proba-

bility of conversion. When there are differences between the feature permutation technique and

SHAP we should consider the latter.

5.3 Accumulated local effect plots

The previous techniques for explaining black-box models just provide the overall importance

of the customer’s attributes. Accumulated local effects (ALE) plots (Apley and Zhu, 2020)

provide a visualization of how conversions change with the model input variables. For instance,

it indicates whether this change is positive or negative, linear or non-linear, convex or concave.

The idea of ALE plots is simple yet powerful. For a given regressor, Xj, we first divide its

range using a grid with a certain number of bins. Typically, the bin limits are chosen using the

quantiles of the empirical distribution of Xj. Then, we compute how much the model output

(i.e., the probability of conversion) changes, on average, in each of these bins. These changes
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give the local average effect of Xj on the model output. Afterwards, these changes are summed

(“accumulated”) from the first bin up to a given value of Xj. The ALE plot is a representation

of these sums as a function of Xj, providing a visualization of how the model output depends

on Xj across its range. The average change is usually subtracted from the individual sums, and

therefore these are centered at zero.

Figure 3: ALE plots for the most important customer features according to the SHAP values.

Figure 3 shows the ALE plots for the 4 most important customer features according to

the SHAP values. These plots show complex dependencies between these features and the

probability of conversion. They show that the probability of conversion is stable when the average

number of pageviews is lower than 5. For higher values of average pageviews it increases linearly.

The probability of conversion reaches a maximum when the feature “Equip pageviews total” is

between 8 and 10, and reaches a plateau when the number of distinct days the customer browsed

the website is greater than 7. They also show a highly nonlinear behavior of the probability of

conversion as a function of the feature “Source1 pageviews”.

16



6 Conclusions

In this study we showed that companies with e-commerce channels can rely on black-box models

for customer profiling despite their opaqueness. Using website data from a multinational com-

munications service provider we showed that the most relevant customer features can be easily

extracted from a black-box model, providing the marketing team with the most appropriate

information to elaborate personalized offers without compromising targeting efficiency. There-

fore, companies do not have to sacrifice prediction accuracy to understand their customers. To

achieve this goal we trained a glass-box model – a logistic regression –, and a black-box model

– a gradient boosting machine – to predict customer conversions. We showed that, as expected,

the black-box model had greater accuracy than the glass-box model. Using explainable machine

learning techniques we showed that the gradient boosting machine identified the most important

customer features in the logistic regression model. Furthermore, the gradient boosting machine

identified important relationships between customer features and the probability of conversion

that the logistic regression failed to capture. The black-box model suggested that attributes

measuring customer activity in the e-commerce platform of the communications service provider

– such as the average pageviews per day and the number of distinct days in which there were

visits – are the best predictors of purchases. Also, the accumulated local effects plots revealed

complex relationships between predictors and the probability of conversion.
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