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On the uncertainty of real estate price

predictions

João A. Bastos* Jeanne Paquette

Lisbon School of Economics & Management (ISEG) and REM

University of Lisbon

Abstract

Uncertainty quantification associated with real estate appraisal has largely been

overlooked in the literature. In this paper, we address this gap by analyzing

the uncertainty in automated property valuations using conformal prediction, a

distribution-free procedure for constructing prediction intervals with valid coverage

in finite samples. Through an empirical study of property prices in the San Fran-

cisco Bay Area, we find that prediction intervals obtained using conformal quantile

regression have exact coverage. In contrast, prediction intervals obtained from non-

conformal quantile regressions severely undercover the data. Furthermore, we show

that the intervals adapt to various characteristics of the dwellings, which is crucial

given the heterogeneous nature of real estate data. Indeed, we observe that larger

and older properties, those in both low and high-income neighborhoods, as well as

those on the market for less than one year are more challenging to evaluate.

Keywords: Real estate; Automated valuation model; Conformal prediction; Quantile

regression; Machine learning.

1 Introduction

Real estate brokers and investment advisers use predictive tools like automated valuation

models (AVMs) to offer guidance and advice to prospective property buyers, investors,

and sellers. These tools allow them to estimate property values, analyze the impact

of various property attributes on prices, and provide informed recommendations to their

clients. The conventional method for estimating house prices is hedonic, meaning it relies

on the attributes of the dwellings. Typically, this involves using a linear regression model

estimated through least squares to model house prices as a function of these attributes

(Goodman, 1978). In recent years, with the growing accessibility of large databases,

*Corresponding author: jbastos@iseg.ulisboa.pt
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machine learning models such as neural networks and ensemble methods have become

increasingly prevalent for property valuation tasks, gradually replacing linear hedonic

models (see, inter alia, Peterson and Flanagen, 2009; Guan et al., 2011; Ho et al., 2021;

Hjort et al., 2022). These methods possess strong capabilities to identify and model

nonlinear patterns, making them more suitable for property valuations.

Surprisingly, the literature on real estate appraisal has predominantly focused on

point predictions, overlooking the quantification of the associated uncertainty. When a

real estate company lists a new property, the real estate broker may not only aim to

provide an expected selling price to the seller but also an interval of prices within which

the property is likely to sell with a high degree of confidence. On the other side of

the transaction, we may have individuals who intend to sell a property and reinvest the

proceeds. In addition to wanting to know the expected selling price, these individuals may

also seek a reliable range of potential selling prices to effectively plan a future investment.

Consider a bank providing a home mortgage loan. The bank may seek a conservative

estimate of the appraised value when assessing the debtor’s default risk. This value can

be obtained from the lower bound of a prediction interval. In all the examples above,

the agents need to quantify the uncertainty of the prediction provided by their valuation

models. This uncertainty may be quantified via prediction intervals.

The problem at hand involves a set of n property prices {Yi}ni=1 and corresponding

explanatory variables {Xi}ni=1, such as the size, the number of bedrooms, and location.

Our objective is to construct a prediction interval C(Xn+1) ⊆ R for the unknown price

Yn+1 of a property with known characteristics Xn+1. Given a significance level α, the goal

is to ensure that the prediction interval has high probability of containing the unknown

property price

Pr(Yn+1 ∈ C(Xn+1)) ≥ 1− α. (1)

Furthermore, this relationship should hold for any joint distribution of the data PX,Y .

Regrettably, the conventional method for constructing prediction intervals for a linear

hedonic model, based on the studentized least squares estimators, relies on the assump-

tion of normality for the error term. Because this assumption rarely holds, studentized

prediction intervals do not ensure exact coverage, meaning they do not include the ob-

served price at a rate aligned with the desired level. A distribution-free alternative is

to construct prediction intervals using regression quantiles (Zhou and Portnoy, 1996).

Training two models to learn the quantile functions qα
2
(X) and q1−α

2
(X) enables us to

obtain a prediction interval for Yn+1 with a nominal coverage level of 1− α, given by

C(Xn+1) =
[
qα

2
(Xn+1), q1−α

2
(Xn+1)

]
. (2)

Regarding the functional form for qα(X) we could consider the conventional quantile

regression of Koenker and Bassett (1978). But this would impose a linear association be-

tween the conditional quantiles of the target variable and the predictors, whereas property
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prices typically exhibit nonlinear relationships with the dwelling’s characteristics. Fur-

thermore, these intervals based on quantile regressions are not guaranteed to provide

exact coverage, even if the true relationship between prices and property characteristics

is linear.

Alternatively, we could employ nonlinear machine learning models. Indeed, some

approximate solutions have been proposed for constructing prediction intervals for neu-

ral networks (Papadopoulos et al., 2001) and ensemble methods (Wager et al., 2014).

However, the prediction intervals derived from these solutions cannot be constructed

without making strong assumptions or relying on large-sample asymptotic approxima-

tions that may not be easily justifiable. Another approach could involve training two

machine learning models for conditional quantiles to construct prediction intervals, fol-

lowing the principle outlined in Equation 2. Indeed, many machine learning algorithms

can be adapted to learn conditional quantiles (see Taylor (2000), in the case of neural

networks and Meinshausen (2006), in the case of random forests). However, as the em-

pirical results below demonstrate, this approach gives intervals that strongly undercover

the data, resulting in intervals that fail to include the observed price more often than the

nominal level.

In this paper, we investigate the uncertainty in real estate price predictions using con-

formal prediction – a method for constructing statistically rigorous prediction intervals,

ensuring valid coverage in finite samples without relying on distributional assumptions

(Papadopoulos et al., 2002; Vovk et al., 2005, 2009; Lei et al., 2013; Lei and Wasser-

man, 2014). Specifically, we employ conformal quantile regressions (Romano et al., 2019)

to construct prediction intervals of the type described in Equation 2. The method is

distribution-free, meaning that prediction intervals with valid coverage are obtained re-

gradless of the distribution of the data. In contrast to alternative conformal prediction

techniques, conformal quantile regression constructs flexible and adaptive intervals, ca-

pable of capturing the varying levels of uncertainty associated with the prices of different

dwellings. Furthermore, it can be used with any model for conditional quantiles.

The empirical analysis is based on data from the dynamic and highly competitive real

estate market of the San Francisco Bay Area, where property valuations are influenced by

a multitude of complex factors. San Francisco has some of the highest real estate prices

in the United States, with median property prices well above the national average. The

dataset contains information on sold properties over the period from 2020 to 2023. San

Francisco has a diverse array of neighborhoods characterized by varying income levels and

amenities. The city’s geography, featuring hills and waterfront on three sides, has also

contributed to the development of neighborhoods with distinct characteristics. Indeed,

as we show below, housing prices vary greatly across different neighborhoods of the city.

To account for the city’s heterogeneity, we enriched our dataset with socio-economic,

geographic, and demographic data from the city’s survey records and the United States

Census Bureau. We collected socio-economic data such as median income, employment
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rate, and poverty rate. The discrepancies in socio-economic indicators between the dif-

ferent areas of San Francisco are very high. Therefore, explanatory variables of this

nature must be included in the property valuation process. We also collected data on

amenities such as the number of schools and parks, and the easiness of access to public

transportation.

The machine learning models used for predicting property prices are based on tree

ensembles. Preliminary results showed that these models predict more accurately prop-

erty prices in our dataset than neural networks. This is not surprising since tree-based

model still outperform neural networks on many problems with tabular data (Grinsztajn

et al., 2022; Curth et al., 2024). In particular, we used a gradient boosting machine with

a modified loss function for predicting conditional quantiles.

We are aware of two previous applications of conformal prediction in the area of real

estate valuation. Bellotti (2017) applied conformal prediction to AVMs using data for

the UK housing market. As acknowledged by the author, these data include a rather

limited set of explanatory variables, lacking features such as the number of bedrooms

and property size. Hence, Lim and Bellotti (2021) expanded the work of Bellotti (2017)

by applying conformal prediction to a richer dataset, namely the public Ames Housing

dataset. They also introduced and compared different variations of a conformal predic-

tion algorithm. Our analysis introduces several novel elements to the study of uncertainty

quantification in real estate markets. First, by using conformal quantile regression, we

construct prediction intervals with widths that are adaptive to different property char-

acteristics. Second, we do not limit our analysis to the study of the marginal coverage

guarantee shown in Equation 1. Instead, we also study the behaviour of the conditional

coverage guarantee

Pr (Yn+1 ∈ C(Xn+1)|Xn+1 = x)) ≥ 1− α, (3)

which should be satisfied for any x and any joint distribution of the data PX,Y . This is

a stronger property than the marginal coverage property stated in Equation 1. In fact,

conditional coverage is rarely achieved across all x (Vovk, 2012), and our empirical find-

ings corroborate this observation. However, evaluating the conditional coverage allows

us to assess the adaptability of prediction intervals. Our findings reveal that prediction

intervals adjust to distinct dwelling characteristics, a critical aspect given the heteroge-

neous nature of real estate data. Specifically, we observe that larger and older properties

are more challenging to evaluate. The non-trivial relationship between a property’s age

and its market value introduces uncertainty. Indeed, older properties tend to undergo

renovations over the years, a factor not readily accounted for in our dataset. This lack of

information increases the difficulty in accurately evaluating older properties. Addition-

ally, properties located in both low and high-income neighborhoods, as well as those on

the market for less than one year, present increased difficulty in evaluation. The increased

uncertainty at both ends of the income distribution can be attributed to the significantly
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different variables influencing property prices at the opposite ends of San Francisco’s real

estate market.

Third, our dataset incorporates both private data sourced from a real estate market-

place company and public data obtained from the city’s survey records and the United

States Census Bureau Data. Therefore, our study includes not only housing attributes

but also macro-level indicators that significantly influence the real estate market and

drive housing prices. By integrating a diverse range of variables, our analysis aims to

provide a more holistic understanding of the factors driving the uncertainty in housing

prices. Finally, our study focuses on the unique real estate market of San Francisco, char-

acterized by its large share of high-income tech workers, the diversity of neighborhoods in

terms of income and amenities, and the geographical constraints and strict zoning laws.

These factors ultimately lead to a wide variety of housing offers and prices.

The remainder of this paper is structured as follows. The following section presents

our methodology for quantifying the uncertainty of real estate prices. Section 3 exposes

the data used in the empirical study. In particular, we examine the most important

determinants of real estate prices in the city of San Francisco. In Section 4, we present

the main results of our analysis, focusing on both marginal and conditional prediction

intervals. Section 5 provides a summary of the results and some concluding remarks.

2 Methodology

Let Y represent a property price, and X denote a vector of explanatory variables, such as

the size, number of bedrooms, location, and other relevant factors. We assume that a real

estate broker has a sample of n sold properties, denoted as {(Xi, Yi)}ni=1, which are used to

train an automated valuation model. This agent wants to list a new property with known

characteristics Xn+1 and, naturally, unknown selling price Yn+1. We assume that all

observations in the dataset, including the new property, {(Xi, Yi)}n+1
i=1 , are exchangeable

and drawn from a joint distribution of the data PX,Y .
1 The agent aims to establish a

prediction interval for the selling price C(Xn+1) ⊆ R that fulfills Equation 1 for any

chosen coverage level 1−α. Moreover, this relationship should remain valid for any joint

distribution PX,Y .

2.1 Conformal prediction

A straightforward approach for constructing conformal intervals is the split conformal

prediction method (Papadopoulos et al., 2002). This method entails dividing the training

data into two subsets: S1 = (Xi, Yi) : i ∈ I1 for estimation and S2 = (Xi, Yi) : i ∈ I2 as

the calibration set for obtaining conformity scores. A regression model Y = f(X) is then

trained on S1, where any regression function can be employed. Subsequently, conformity

1This assumption holds automatically if the (Xi, Yi) are independent and identically distributed.
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scores are computed for each observation in the calibration set using the absolute residuals

of the trained model f̂(X):

ε̂i = |Yi − f̂(Xi)| ∀ i ∈ I2. (4)

For a given significance level α, a quantile q1−α(I2) is computed from the empirical

distribution of the conformity scores,

q1−α(I2) =
⌈(n2 + 1)(1− α)⌉

n2

th-quantile of ε̂i : i ∈ I2, (5)

where n2 denotes the number of observations in the calibration set. Finally, the prediction

interval for the unknown property price Yn+1 is constructed as:

C(Xn+1) =
[
f̂(Xn+1)− q1−α(I2), f̂(Xn+1) + q1−α(I2)

]
. (6)

One limitation of this approach is that it generates constant prediction intervals, fail-

ing to capture the empirically observed varying width of intervals for property prices.

However, the split conformal prediction method can be extended to address this limi-

tation by introducing a locally adaptive approach known as locally adaptive conformal

prediction (Papadopoulos et al., 2008). This method scales the absolute residuals ε̂i by

their dispersion at Xi, allowing for non-constant prediction intervals. However, Romano

et al. (2019, pp. 8) identifies several limitations in this approach.

Considering the limitations of early conformal prediction methods, Romano et al.

(2019) propose the use of conformal quantile prediction to obtain intervals that are well-

calibrated and adaptive to variations in the data. In conformal quantile prediction, the

training dataset is also divided into two subsets: one for estimation and the other for

calibration to obtain conformity scores. Given a coverage level of 1 − α, two regression

models for quantiles, namely q̂α
2
(X) and q̂1−α

2
(X), are trained using subset S1. Then,

conformity scores are calculated using:

ε̂i = max
[
q̂α

2
(Xi)− Yi, Yi − q̂1−α

2
(Xi)

]
, ∀ i ∈ I2. (7)

Next, Equation 5 is employed to compute the quantile q1−α(I2) of the empirical distribu-

tion of these conformity scores. Finally, the conformalized prediction interval for Yn+1 is

given by:

C(Xn+1) =
[
q̂α

2
(Xn+1)− q1−α(I2), q̂1−α

2
(Xn+1) + q1−α(I2)

]
. (8)

Romano et al. (2019) demonstrates that if the observations {(Xi, Yi)}n+1
i=1 are exchange-

able, the prediction interval C(Xn+1) given in Equation 8 satisfies Equation 1. Further-

more, if the conformity scores {ε̂i : i ∈ I2} are almost surely distinct, then C(Xn+1) is

nearly perfectly calibrated:

Pr(Yn+1 ∈ C(Xn+1)) ≤ 1− α +
1

1 + n2

. (9)
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2.2 Machine learning model for quantiles

To obtain the conformalized prediction intervals described in Equation 8, a regression

model for quantiles is required. Here, we employ a modified version of a gradient boosting

machine (Friedman, 2001) as the quantile regression model. The gradient boosting ma-

chine combines multiple base models to form a robust ‘committee’ of models. Usually, the

base models are decision trees. The gradient boosting machine’s prediction Ŷ is derived

from the sum of the predictions of a set of K decision trees {fk(X)}Kk=1:

Ŷ =
K∑
k=1

fk(X). (10)

The first tree, f1(X), is trained on the original data. The decision trees that follow

{fk(X)}Kk=2 are added to the committee sequentially. Every new tree in the committee,

though, is trained using the errors made by the set of previous trees. The goal of this

procedure is to correct the error made by the current committee. During each iteration,

the tree selected for addition to the committee is the one that minimizes the regularized

loss function:
n∑

i=1

L
(
Yi, Ŷ

(k−1)
i + fk(Xi)

)
+ γT +

1

2
λ||wk||2. (11)

When aiming to predict the mean response, L(·) is the squared-error loss,

L
(
Yi, Ŷ

(k−1)
i + fk(Xi)

)
=

(
Yi − Ŷ

(k−1)
i − fk(Xi)

)2

. (12)

However, when it comes to predicting quantiles, we use an alternative loss function re-

ferred to as the ‘pinball loss’, which is defined as

L
(
Yi, Ŷ

(k−1)
i + fk(Xi)

)
=

α
(
Yi − Ŷ

(k−1)
i − fk(Xi)

)
, if Yi ≥ Ŷ

(k−1)
i + fk(Xi)

(1− α)
(
Ŷ

(k−1)
i + fk(Xi)− Yi

)
, otherwise.

(13)

The last two terms in Equation (11) act as regularization penalties designed to dis-

courage complex trees, thus mitigating overfitting of the training data by the committee.

Parameter γ imposes a penalty on the number of terminal nodes in a tree, represented by

T , while λ penalizes the magnitude of the tree weights wk. A gradient descent algorithm

is used to minimize the loss function. Several efficient implementation of gradient boost-

ing have been proposed. In this paper, we use the ‘Light Gradient Boosting Machine’, or

LightGBM (Ke et al., 2017). LightGBM is known for its speed and efficiency.2 Similar to

many other machine learning algorithms, LightGBM has a variety of ‘hyperparameters’

– parameters not learned during training but requiring optimization.

2source: https://lightgbm.readthedocs.io/en/latest/Experiments.html
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3 Data

Our empirical results are based on property prices from the San Francisco Bay Area,

California, USA. San Francisco real estate is expensive, with property prices typically

exceeding those elsewhere in the United States. We focus on residential properties. Our

dataset comprises 8,249 observations of sold properties spanning from 2020 to 2023. This

dataset was sourced from Zillow, a real estate marketplace company.

Figure 1: Distribution of prices, in thousands of USD, for sold properties in the dataset.

Figure 1 shows the distribution of sold property prices within the dataset, reveal-

ing a slight right skew. The mean price stands at $2,150,000, while the median price

is $1,680,000. In principle, the requirement that the data must be exchangeable – as

explained in Section 2 – could be compromised by increasing property prices. However,

prices have remained relatively stable during the period covered by the data: the median

selling price in 2020 stood at $1,702,000, which remained relatively stable in 2022 at

$1,700,000. Furthermore, there was a decrease in the price of properties sold in 2023,

with a median selling price of $1,380,000. Nonetheless, these variations in median prices

did not affect the exact coverage guarantees provided by conformal prediction, as we show

in the following section.

Zillow provided several explanatory variables detailing the characteristics of the hous-

ing units and their locations. The numeric explanatory variables and their summary

statistics are listed in Table 1. Additionally, we were provided with a categorical variable

indicating the property type, which includes categories such as single-family, townhouse,

condo, and apartment. Single-family homes are the most expensive properties, boasting

a median price of $1,700,000, while apartments represent the least expensive option, with
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Variable mean q0.05 median q0.95

House size (sq ft) 2004 900 1729 3931

Lot size (sq ft) 4207 1643 2790 6680

No. bedrooms 3.2 2 3 5

No. bathrooms 2.4 1 2 5

Year built 1936 1900 1931 2001

Days on market 525 41 542 1007

Table 1: Summary statistics of the numeric variables provided by the real estate company:

mean, median, and the 0.05 and 0.95 quantiles.

a median price of $900,000. Given that the vast majority (95%) of properties in the

dataset are single-family homes, we group the remaining property types into a single cat-

egory. The dataset further includes a categorical variable denoting the type of heating,

distinguishing between central, radiant, electric, or no heating. Additionally, it includes

dummy variables indicating whether the property features garage, parking space, and

fireplace. The average property in the dataset is a single-family home with an area of

approximately 2004 square feet, built around the mid-1930s, comprising 3 bedrooms and

2 bathrooms, with both a parking space and a garage, and equipped with central heating.

Figure 2: Location of the properties in San Francisco.
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We were also provided with the latitude and longitude coordinates of the properties.

As illustrated in Figure 2, the properties are evenly distributed across the residential

areas of San Francisco. Empty spaces on the map correspond to parks or unzoned areas,

such as Golden Gate Park and Lake Merced Park in the west, and the Presidio National

Park in the northern tip of the peninsula. Alongside the coordinates, zip codes for the

properties were also provided. We augmented our dataset with data obtained from the

United States Census Bureau website, which offers a wide array of socio-demographic

attributes. For each of the 24 neighborhoods in San Francisco, defined by zip codes, we

obtained the following socio-demographic data: median income, median rent, racial de-

mographics, poverty rate, employment rate, home-ownership rate, and number of housing

units. Additionally, for each neighborhood, we collected variables defining the quality of

amenities such as schools, parks, safety, transportation, and cleanliness. We created a

dummy variable indicating whether a neighborhood has shoreline. Finally, we created

four additional variables based on existing variables: the number of housing units per

capita, the average room area (house area divided by the number of bedrooms and bath-

rooms), an interaction term between the number of days on the market and the house

size, and another interaction term between the number of days on the market and the lot

size. The rationale for creating these interaction variables is that larger properties may

spend more time on the market.

The median annual income in San Francisco stands at approximately $132,000, but

there is a significant income variation across neighborhoods, as reported in Table 2.

Furthermore, Table 2 reveals a positive relationship between income levels across neigh-

borhoods and the median property prices within those areas. For instance, the Van

Ness/Civic Center neighborhood has the lowest median household income at $55,888.

Furthermore, this neighborhood contends with a poverty rate of 18.5%, rendering it

the second most impoverished area in San Francisco, trailing only behind Lower Nob

Hill/Chinatown/Downtown. As expected, property prices in the Van Ness/Civic Center

neighborhood are well below the city’s average. Conversely, the Financial District South

is the neighborhood with the highest annual median income, reaching $244,662, and it

boasts elevated employment and home ownership rates, standing at 76% and 41.8%, re-

spectively. Interestingly, properties in the Financial District South are not particularly

expensive when compared to neighborhoods such as the Marina, which is the neighbor-

hood with the second-highest median income. The spatial heterogeneity observed in San

Francisco, characterized by extreme disparities in socio-economic indicators across vari-

ous areas, underscores the importance of incorporating such variables into the property

valuation process.
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neighborhood Median Median Poverty Employment Home

price income rate rate ownership

Van Ness/Civic Center 1294 55888 18.5 62.3 9.2

South of Market 733 93143 16.2 71 18.4

Financial District South 1080 244662 11.5 76 41.8

Mission Bay 1350 161391 10.7 73.1 39.7

Lower Nob Hill/Chinatown/Downtown 2027 65392 19.7 58.9 9.5

Polk/Russian Hill (Nob Hill) 1680 104476 12.4 70 16.3

Inner Mission 1750 143938 9.9 72.9 38.3

Embarcadero 985 135735 18.2 54.9 21.3

Mission Terrace 1247 112795 9.1 63.2 67.8

Castro 2625 169459 5.8 74.7 43.9

Zion District/Lower Pacific Heights 3139 138023 12.4 68.2 26.2

Parkside/ Sunset District 1610 134652 5.9 61.5 74.5

Buena Vista Park 2853 174419 7.2 79 26.8

Inner Richmond/Richmond District 2965 139043 5.9 67.1 35.6

Outer Richmond 2000 116970 9.7 63.8 43.7

Marina 4000 194098 4.4 79.6 28.6

Bayview-Hunters Point 960 66618 18 56 51.1

Westwood Highlands/Twin Peaks West 1978 180768 4.5 62.3 81.1

Diamond Heights/Twin Peaks West 1885 181329 5.3 71.7 54.1

Stonestown 1475 93995 13 60.3 45.8

Marina District 1190 71063 14.6 60.5 16.8

Portola 1100 93068 11.4 61.3 61.9

Central Sunset/ Sunset District 1675 130708 8.4 65.2 50.4

Potrero Hill 1650 164289 7.8 76.7 37.5

Table 2: Socio-demographic data for San Francisco neighborhoods: Median housing prices

are expressed in thousands of USD, while median incomes are stated in USD.

4 Empirical analysis

4.1 Predictive accuracy of the models

We begin the exposition of our empirical results by examining the accuracy of the trained

models. We compare the accuracy of the gradient boosting machine with the linear

model typically used in hedonic valuation models. Additionally, as a robustness check,

we compare the gradient boosting machine to an alternative tree-ensemble model, the

random forest (Breiman, 2001). A random forest averages the predictions of various trees

trained on bootstrap samples of the original dataset. Furthermore, additional diversity

in the individual trees is introduced by randomly selecting a subset of regressors at each

split attempt during the tree growth process.

We employ several metrics to compare the predictive accuracy of the models. Common

11



accuracy metrics in regression problems include the root mean squared error (RMSE) and

mean absolute error (MAE), defined as

RMSE =

√√√√ 1

n

n∑
i=1

(
Yi − Ŷi

)2

, (14)

and

MAE =
1

n

n∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ . (15)

Due to the observed right-skewed distribution of the absolute residuals, we also take into

account the median absolute error,

MdAE = median
(∣∣∣Y − Ŷ

∣∣∣) . (16)

Lastly, to account for the influence of the price scale on accuracy metrics, we also consider

the scale-independent mean absolute percentage error,

MAPE =
1

n

n∑
i=1

∣∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣∣× 100, (17)

and the R2 metric,

R2 = 1−

∑n
i=1

(
Yi − Ŷi

)2

∑n
i=1

(
Yi − Ȳ

)2 . (18)

Note that the R2 metric compares the sum of squared residuals of the model with that

of a näıve model that always predicts the average property price, Ȳ .

model RMSE MAE MdAE MAPE R2

Linear model 733.8 442.7 278.7 26.5 0.683

Random Forest 582.6 333.6 188.1 19.9 0.801

Gradient boosting machine 548.7 314.1 175.2 18.1 0.823

Table 3: Out-of-sample model accuracy given by a 10-fold cross-validation. The RMSE,

MAE, and MdAE are measured in thousands of USD.

Table 3 presents the out-of-sample accuracy metrics obtained through a 10-fold cross-

validation. The RMSE, MAE, and MdAE are expressed in thousands of USD. We observe

that both tree-based ensembles outperform the linear model typically used in hedonic

models. While the tree-based ensembles exhibit comparable accuracy, the gradient boost-

ing machine holds a slight edge. The gradient boosting machine yields a mean absolute

error of $314k and a median absolute error, which is not influenced by large errors, of

$175k. Additionally, the mean absolute percentage error is 18%. These results indicate

that there exists further heterogeneity in sales prices within the San Francisco real estate

market, which is not fully captured by the extensive set of explanatory variables included

in the dataset.

12



4.2 A look into the determinants of predictions

Based on the preceding findings, the gradient boosting machine emerges as the most

effective model for predicting housing prices within our dataset. Now, we look deeper into

this model to identify the variables that exert the most significant influence on its housing

price predictions. One widely recognized methodology for assessing variable importance

is SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017; Lundberg et al.,

2018). SHAP relies on the concept of Shapley values, which originated within cooperative

game theory. The Shapley value method distributes payoffs by quantifying the marginal

contributions of each individuals within a group, allocating the payoff based on each

player’s respective contribution to the collective effort.

Figure 3: Beeswarm plot for the most influential features according to the SHAP method-

ology. The model is a gradient boosting machine trained to learn median house prices.

To conserve space, we just provide a brief overview of the methodology here; interested

readers are directed to Molnar (2021) for a comprehensive introduction to the subject.

The methodology assigns a SHAP value to each observation and explanatory variable,

with variables having large absolute SHAP values considered important to the model. The

global importance of a variable is determined by calculating the average of its absolute

SHAP values across the dataset. SHAP values for individual observations are typically

visualized using a beeswarm plot. Figure 3 depicts the beeswarm plot that we obtained for

a gradient boosting machine trained to learn median house prices. In this plot, variables
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are arranged according to their global importance. For instance, in our dataset, the

house size emerges as the most influential variable in determining prices on average. The

horizontal positions of the dots represent the SHAP values for individual observations. To

aid in understanding the distribution of SHAP values, overlapping points are vertically

offset. Large positive SHAP values indicate a substantial positive effect on the model’s

output, while large negative SHAP values indicate a significant negative effect. Different

shades of gray are employed to depict the value of the explanatory variable – dark shades

represent high values, while light shades indicate low values. Large house size values

correspond to large and positive SHAP values, while small house size values correspond

to negative SHAP values. This confirms the expected positive relationship between house

size and selling price.

Latitude is the second most important variable, while longitude occupies the eighth

position in importance. This aligns with the well-know emphasis on location by real estate

brokers. In particular, we note a positive effect of latitude on prices, which is partly

influenced by the affluent Richmond-Presidio-Marina area in northern San Francisco.

Interestingly, the number of days on the market exhibits a negative effect on house price

predictions. This suggests that if a house remains on the market for a long period, it is

likely that the asking price will decrease over time. Moreover, a negative and seemingly

counterintuitive relationship between the number of bedrooms and house price appears

to exist. However, this relationship is primarily driven by a small number of very large

houses with more than five bedrooms that were sold for lower prices. Once these large

houses are excluded, a positive relationship between the number of bedrooms and selling

price emerges.

4.3 A look into prediction intervals

After training the machine learning model, we can obtain conformal prediction intervals

for the test data. To assess the adaptability of the prediction intervals, we examine how

their width changes as a function of explanatory variables. In this section, we visualize

how the prediction intervals behave as a function of some of the variables highlighted in

the beeswarm plot in Figure 3. In the plots below, we considered a nominal coverage of

0.9.

Figure 4 depicts the conformal prediction intervals plotted against house size (in

sq. ft.) for a random sample of 200 properties. The gray bars represent cases where

the prediction interval failed to cover the actual value, while the dots represent actual

property prices. With a nominal coverage of 0.9, the instances where the prediction

interval fails to provide adequate coverage should account for approximately 10% of the

plotted data points. The adaptability of the prediction intervals to model uncertainty is

evident, as significant variations in the interval size can be observed across the house size

range. The larger and more expensive the house, the wider the range of potential selling
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Figure 4: Conformal prediction intervals against house size (in sq. ft.) for a random

sample of 200 properties. The bars in gray represent the cases where the prediction

interval failed to cover the actual value. The dots represent actual property prices. The

nominal coverage is 0.9.

prices.

Figure 5: Conformal prediction intervals against the number of days the property was on

the market for a random sample of 200 properties. The bars in gray represent the cases

where the prediction interval failed to cover the actual value. The dots represent actual

property prices. The nominal coverage is 0.9.
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Figure 6: Conformal prediction intervals against the age of the property for a random

sample of 200 properties. The bars in gray represent the cases where the prediction

interval failed to cover the actual value. The dots represent actual property prices. The

nominal coverage is 0.9.

Figures 5 and 6 display the conformal prediction intervals plotted against the number

of days the property was on the market and the age of the property, respectively, for

different random samples of 200 properties. In these cases, there is no strong pattern in

the magnitude of the intervals.

It is evident from Figure 4 that larger properties, which typically command higher

prices, correspond to wider prediction intervals. Therefore, we divide the absolute in-

terval’s width by the actual property price to obtain a relative measure of uncertainty.

This can provide a more meaningful comparison of widths across properties with different

price levels. Considering the limits of the conformal intervals in Equation 8, we have

relative width ≡
[
q̂1−α

2
(X) + q1−α(I2)

]
−
[
q̂α

2
(X)− q1−α(I2)

]
Y

(19)

=
q̂1−α

2
(X)− q̂α

2
(X) + 2q1−α(I2)

Y
.

We note that, because the (1− α)-quantile of the conformity scores, q1−α(I2), is positive

for any α, the width of the conformal intervals will always be larger than that of the

non-conformal intervals [q̂α
2
(X), q̂1−α

2
(X)].

Figure 7 displays the distribution of relative interval widths. This distribution exhibits

an asymmetric shape with positive skewness. The uncertainty for some predictions can

be very high, reaching up to 5 times the actual selling price.
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Figure 7: Distribution of relative interval widths for property prices in the test set.

4.4 Empirical coverage

To evaluate the reliability of the models’ prediction intervals, we calculate the empirical

coverage. This is defined as the proportion of actual property prices that fall within the

prediction intervals. This proportion should be evaluated using an independent test set.

Let ntest denote the number of observations in the test set, and Itest denote the set of

indices of the observations in this set. The empirical coverage of the prediction intervals

is
1

ntest

∑
i∈Itest

1(Yi ∈ C(Xi)), (20)

where the indicator function 1(·) is equal to 1 if the actual selling price Yi falls within

the prediction interval C(Xi), and 0 otherwise.

A real estate broker may also be interested in the width of the intervals as they reflect

the uncertainty in the selling price. Since the distributions of relative interval widths

in Figure 7 exhibit significant skewness, we report the median value of relative interval

widths for the test set. This provides a comprehensive measure of interval widths that is

less influenced by the extreme values observed in Figure 7 and captures the typical range

of interval widths observed in the data.

However, to compute the empirical coverage and the median relative widths for the

real data, we need to consider sampling variability. While conformal regression offers

non-asymptotic coverage guarantees, there are two factors contributing to finite-sample

variability. The first factor arises from the random partitioning of the original data

into training and test sets. This affects the out-of-sample performance metrics of any

predictive model, whether conformal or not. The second source of finite-sample variability
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is due to the random selection of calibration samples from the training data. This source

of variability only affects conformal prediction models, as calibration data is required to

obtain sample conformity scores. Consequently, the prediction intervals conditioned on

the calibration data become random variables. In Vovk (2012), it is shown that, given a

training dataset (Xi, Yi)
n
i=1 and random calibration samples

Pr (Yn+1 ∈ C(Xn+1)|{(Xi, Yi)}ni=1) ∼ Beta(n+ 1− k, k), (21)

where k = ⌊(n + 1)α⌋. To address the sampling variability, we conducted the relevant

calculations 100 times using different random splits of the data into training, calibration,

and test sets. By averaging the results, we mitigated the impact of finite-sample variabil-

ity and obtained more reliable estimates for the empirical coverage and median relative

widths.

Non-conformal quantile regression

Nominal coverage Empirical coverage Median relative width

0.7 0.56 0.26

0.8 0.66 0.33

0.9 0.78 0.45

Conformal quantile regression

Nominal coverage Empirical coverage Median relative width

0.7 0.70 0.35

0.8 0.80 0.45

0.9 0.90 0.62

Table 4: Empirical conditional coverages and median relative widths given by non-

conformal quantile regressions (top panel) and conformal quantile regressions (bottom

panel). Three nominal coverage levels are considered: 0.7, 0.8 and 0.9.

Table 4 reports the empirical coverage in the test data for three nominal coverage

levels: 0.7, 0.8 and 0.9. The panel at the top refers to prediction intervals obtained from

quantile regressions that are not conformalized, [q̂α
2
(X), q̂1−α

2
(X)]. The panel at the

bottom refers to prediction intervals obtained from quantile regressions that were con-

formalized according to Equation 8. These results show that non-conformalized quantile

regressions generate prediction intervals that severely miss the actual selling prices re-

gardless of the nominal coverage level. On the other hand, the conformal prediction

intervals maintain exact coverage regardless of the nominal coverage level. That is, the

conformalized models provide reliable finite-sample coverage guarantees. Regarding the

median of relative interval widths, the non-conformal models provide narrower intervals

than the conformal models. This was anticipated since the former seriously undercover

the observed selling prices. On the other hand, the conformal models exhibit wider in-

tervals, reflecting their ability to capture the uncertainty in predicting real estate prices

with reliable guarantees.
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4.5 Conditional coverage

The marginal coverage guarantee expressed in Equation 1 should be distinguished from

the conditional coverage guarantee in Equation 3, which must be satisfied for any x and

joint distribution of the data, PX,Y . However, achieving conditional coverage guarantee

is impossible without making strong assumptions about PX,Y (Barber et al., 2021). To

obtain valid conditional coverages across different regions of the regressor space, it would

be necessary to train individual models on data specific to each of these regions and

conformalize the intervals accordingly. Nonetheless, it remains an interesting empirical

question to explore the behaviour of conditional coverages in specific regions of the re-

gressor space when the model is trained on the entire dataset. Indeed, the data may be

too limited to effectively train individual models on subsets that cover small regions of a

regressor domain. This might be the case of properties that are rare, such as Victorian

buildings in San Francisco. A real estate broker might want a pricing model for these

specific dwellings, but may not have enough training data for this task. Indeed, in our

dataset, less than %5 of the properties were built before 1900.

If a regressor X is numeric, we can divide its range into a set of K mutually exclusive

partitions, {Xk}Kk=1, and test if the coverage guarantee is well-approximated locally in all

partitions:

Pr (Yn+1 ∈ C(Xn+1)|Xn+1 ∈ Xk)) ≥ 1− α, ∀ k = 1, . . . , K (22)

If a regressor X is categorical, the condition in Equation 22 can be tested across individ-

ual categories or groups of categories. To evaluate the conditional coverage for a given

variable, we divide its range into three mutually exclusive partitions using the 1/3- and

2/3-quantiles. We refer to these groups as the low-, medium-, and high-values groups.

Our test data consists of 1650 observations, resulting in 550 observations in each parti-

tion. Afterwards, we calculate the approximate conditional coverage in each partition,

along with the respective median relative widths.

Table 5 displays the approximate conditional coverages for selected variables: house

size, latitude, lot size, days on market, median income, and age. Again, we consider three

nominal coverage levels: 0.7, 0.8 and 0.9. The results show that the conditional coverage

guarantee in Equation 22 is satisfied in most scenarios. However, in certain cases, the

model is no longer calibrated. In other words, the intervals contain the actual prices

more frequently than expected, making the empirical coverage exceed the given nominal

target coverage. For high values of house size, latitude, and lot size, we observe some

undercoverage. However, the distortion in the empirical coverage observed in these cases

is not as serious as that observed in the non-conformalized models. As for the median

widths, we observe relatively small variations across the partitions, in that the factor

that influences the empirical widths the most is the nominal coverage. Still, we observe

some adaptability of the interval widths across the different partitions. For instance, the

predictions for large houses have higher median relative widths compared to medium-
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Nominal coverage Empirical coverage Median relative width

low medium high low medium high

House size

0.7 0.74 0.73 0.64 0.35 0.34 0.36

0.8 0.84 0.83 0.74 0.45 0.44 0.46

0.9 0.93 0.92 0.85 0.64 0.59 0.64

Latitude

0.7 0.74 0.72 0.65 0.34 0.35 0.36

0.8 0.84 0.81 0.75 0.44 0.45 0.46

0.9 0.93 0.91 0.86 0.62 0.62 0.64

Lot size

0.7 0.71 0.72 0.67 0.35 0.35 0.34

0.8 0.80 0.82 0.78 0.45 0.45 0.44

0.9 0.91 0.91 0.88 0.63 0.63 0.62

Days on market

0.7 0.70 0.71 0.69 0.38 0.35 0.32

0.8 0.80 0.80 0.79 0.49 0.45 0.41

0.9 0.90 0.90 0.90 0.68 0.62 0.57

Median income

0.7 0.73 0.70 0.68 0.35 0.33 0.36

0.8 0.83 0.80 0.78 0.45 0.43 0.47

0.9 0.92 0.90 0.88 0.63 0.59 0.64

Age

0.7 0.70 0.74 0.67 0.34 0.34 0.38

0.8 0.80 0.83 0.78 0.43 0.44 0.49

0.9 0.90 0.92 0.88 0.59 0.60 0.67

Table 5: Approximate conditional coverages and median relative widths measured in

three different partitions of explanatory variables corresponding to low, medium and

high values of these variables. Three nominal coverage levels are considered: 0.7, 0.8 and

0.9.

sized houses. This increased uncertainty is not due to overcoverage, as the empirical

coverage for large houses is actually smaller than the nominal level. Interestingly, pricing

houses that are in their first year on the market (the ‘low’ category) proves to be more

challenging. Once more, this difficulty does not arise from miscoverage, as the conditional

coverages closely match the nominal coverages. Also, predictions for property prices in

low and high income neighborhoods exhibit greater uncertainty compared to those for

medium income neighborhoods. The increased uncertainty at both ends of the income

distribution can be attributed to the significantly different variables influencing property

prices at the opposite ends of San Francisco’s real estate market. Furthermore, we observe

that predicting the prices of older properties, typically those with an age greater than 100
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years, present additional challenges. The non-trivial relationship between a property’s

age and its market value introduces uncertainty. Indeed, older properties tend to undergo

renovations over the years, a factor not readily accounted for in our dataset. This lack of

information increases the difficulty in accurately evaluating older properties.

5 Conclusion

This study presented some results regarding the uncertainty of predictions given by a real

estate appraisal model. Our tool to achieve this goal was conformal quantile prediction,

a model-agnostic procedure that constructs prediction intervals, ensuring valid coverage

in finite samples without relying on distributional assumptions. Through an empirical

application to property prices of the San Francisco Bay Area, we observed that conformal

quantile prediction, consistently delivers coverage guarantees close to the desired nominal

level. On the other hand, intervals based on non-conformal quantiles severely undercover

the data. Also, we showed that the intervals are adaptive to the variations in the data,

which is crucial considering the heterogeneous nature of real estate data. Indeed, we found

that larger properties, older properties, those in both low and high income neighborhoods,

and those on the market for less than one year are more challenging to evaluate. The

ability to flexibly adjust the width of prediction intervals to accommodate varying levels

of uncertainty and complexity within the dataset is a significant advantage. It enables real

estate professionals to make informed decisions across a wide spectrum of property types,

locations, and market conditions, thereby enhancing the practical utility of automated

valuation models.
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