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Abstract: This paper explores how geography shapes the legacy
of redlining, the systemic mortgage lending bias against minority
us neighborhoods. On average, redlined neighborhoods lag behind
adjacent, less-discriminated areas in home values, income, and racial
composition. Yet, redlined neighborhoods near parks and water fare
better. To help understand convergence, we inventory waterfront
renovations, apply machine learning to historical imagery to track
tree canopy changes, and instrument such changes exploiting tree
replacements due to geographic variation in tree plagues and
susceptible species. Findings suggest that enhancing waterfronts
and increasing tree canopy can mitigate the long-lasting effects of
institutionalized discrimination.
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1. Introduction

Spatial inequalities are large and persistent. Rooted in initial conditions or geographical factors,
some places consistently experience disadvantages while others perpetually thrive (Sampson,
2016; Voth, 2021). The experience of growing up in disadvantaged neighborhoods significantly
shapes individuals’ lives and continues to limit their opportunities as adults (Chetty, Hendren,
and Katz, 2016; Sampson, 2019). Evidence regarding the efficacy of relocating individuals
away from such neighborhoods is mixed and implementing such policies on a large scale can
pose substantial challenges (Chyn and Katz, 2021). Therefore, it becomes necessary to think
about interventions that help the convergence of persistently lagging areas.

In the case of the us, the consequences of historical policies that restricted credit in minority
neighborhoods can still be felt in many of these disadvantaged areas. This paper finds a class
of interventions that work by molding seemingly unmodifiable features — natural amenities
— to revert that legacy. The transformation of industrial waterfronts into pedestrian-friendly
promenades or the greening of sidewalks through tree-planting efforts can significantly
contribute to mitigating the lasting effects of pervasive historical discrimination of minority
neighborhoods.

Redlining, the historical practice of systematically denying mortgages to minority neigh-
borhoods, is one of the main instances of institutionalized discrimination in the United States.
Foreclosures became so prevalent during the Great Depression that the Federal Government
began insuring mortgages through the Home Owners’ Loan Corporation (holc) and the
Federal Housing Administration (fha). Both institutions facilitated a rapid expansion of credit
and home ownership in the United States, but not among minorities, particularly African
Americans. The holc developed an appraisal system that graded neighborhoods from A to D,
outlined in maps in colors green to red. The racial composition was decisive in determining
grades: D-graded (redlined) neighborhoods were those with high shares of minority residents
and were systematically denied mortgage insurance.

By institutionalizing and reinforcing the discriminatory practices of realtors and lenders
against minorities, redlining reduced home ownership amongst them, limiting opportunities
for wealth accumulation and social and geographic mobility. Since this discriminatory practice
was institutionalized at the neighborhood level, it also resulted in decades of lower property
tax revenues and public and private investment. Almost half a century after the 1968 Fair
Housing Act and the 1977 Community Reinvestment Act prohibited the practice, redlined
neighborhoods still have lower average home values, incomes, and non-minority presence
than similar nearby neighborhoods subject to weaker lending restrictions.

Prior research on the legacy of redlining focuses on its average effects (Appel and Nickerson,
2016; Rothstein, 2017; Krimmel, 2018; Aaronson, Hartley, and Mazumder, 2021; Hynsjö and
Perdoni, 2023). However, I find that persistence is heterogeneous: not all D-graded neighbor-
hoods have remained degraded, and natural amenities affect their evolution. The convergence
in home values, family incomes, and non-minority shares between D-graded neighborhoods
and similar (and neighboring) areas subject to less stringent historical restrictions is greater
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when D-graded neighborhoods feature waterfronts and parks.
And yet, geography is not necessarily destiny. In fact, I show that what helps redlined

coastal and riverside neighborhoods converge is waterfront revitalization projects, for which I
construct a complete inventory. Of course, waterfront revitalization is only an option by water
bodies. In contrast, vegetation can be planted nearly everywhere. Identifying vegetation on a
wide scale is easy today, thanks to high-resolution near-infrared imagery. To also identify trees
in earlier periods, for which near-infrared imagery is unavailable, I train a machine-learning
algorithm with such modern imagery to detect trees in traditional color aerial photographs.
This allows me to construct the first spatially-detailed long panel of vegetation changes in
us cities. Leveraging this panel, I show that greening redlined neighborhoods by planting
trees has promoted convergence. A natural worry is that growing tree coverage may be a
consequence of gentrification. Exotic tree plagues force neighborhoods to replace susceptible
tree species with several new trees planted for every tree removed. Exploiting this exogenous
source of expanded tree coverage, I establish that doubling local tree canopy is enough for
redlined neighborhoods to achieve full convergence.

Multiple policies articulated the systemic discrimination towards minorities regarding
their residence in the early twentieth century. Discriminatory zoning deterred the entry
of minority residents into majority neighborhoods through density restrictions, and also
concentrated manufacturing activity in minority neighborhoods (Shertzer, Twinam, and Walsh,
2016; Twinam, 2017, 2018). Private covenants explicitly forbade selling houses to minority
households, especially African Americans (Sood and Ehrman-Solber, 2023; Almagro and Sood,
2023). While widespread, these discriminatory practices arose locally. Redlining, instead, was
a nationwide practice institutionalized by Federal agencies. The discovery of the holc maps by
Jackson (1980) was followed by city studies exploring the determinants of the assigned grades
and their effects on credit access (Hillier, 2003, 2005; Crossney and Bartelt, 2005; Fishback,
2014).1 Exploiting bordering discontinuities in the assigned grade (Appel and Nickerson,
2016; Krimmel, 2018; Aaronson, Hartley, and Mazumder, 2021) or focusing on city-level effects
(Faber, 2020; Anders, 2023; Hynsjö and Perdoni, 2023), recent literature shows that redlining
has persistent effects related to increased segregation and neighborhood decay.

This paper is shaped around two main conceptual contributions: heterogeneity in the
persistence of redlining and the malleability of geography as a driver of such heterogeneity.
However, empirically addressing those questions requires careful data treatment. For this
reason, I also make two methodological contributions. The first methodological contribution
is the development of a workflow to create panels of tree canopy in the presence of limited

1Fishback, Rose, Snowden, and Storrs (2022) note that it was mainly the Federal Housing Administration (fha)
rather than the holc that systematically discriminated against minority neighborhoods and started doing so before
the holc maps were created. Thus, some scholars regard the holc maps (jointly produced by the holc and local
brokers) as reflecting rather than originating the prevailing discriminatory appraisal guidelines of America at that
period. Nevertheless, while the fha’s own maps were intentionally destroyed, Aaronson, Hartley, and Mazumder
(2021) show an 86% overlap in areas redlined by the fha map recovered for Chicago and the corresponding holc

map.
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training data. The second contribution is to develop a new procedure to overcome the mis-
alignment between the holc maps and Census data. Since my empirical strategy implements
a difference-in-difference approach between similar and adjacent neighborhoods assigned
different grades, it is important not to blur the border between grades. Thus, in contrast to the
rest of the literature (Appel and Nickerson, 2016; Krimmel, 2018), which apportions grades to
Census units, I apportion Census data to the original graded neighborhoods.

My first conceptual contribution to recent research on the legacy of redlining is to show
that persistence is heterogeneous. A broader literature on economic geography and history
shows how persistent spatial inequalities often originate in historical events or policies (see
Hanlon and Heblich, 2022, for a review). Geographic features have also been found to have
persistent effects, primarily by being a source of location advantage that, absent large shocks,
remains locked in long after that advantage ceases to be relevant (Bleakley and Lin, 2012;
Michaels and Rauch, 2018). Geographic features can also act as amenities or disamenities
that drive spatial sorting and inequalities (Rappaport and Sachs, 2003; Rappaport, 2007; Lee
and Lin, 2018; Heblich, Trew, and Zylberberg, 2021). This paper pits the role of water and
vegetation geographic features as potential amenities against the legacy of discriminatory
housing policies. It shows that these amenities can be strong enough to mitigate and even
eliminate the persistence of historical discriminatory policies.

Another key conceptual contribution of this paper is to show that geography is malleable.
Although historical accounts suggest that the role of geography is shaped by technological
advancements in industry and commerce (Jackson, 1987; Boustan, Bunten, and Hearey, 2018),
most research treats location fundamentals as immutable. In contrast, I show that interventions
can mold geography to create amenities where they were absent or even turn disamenities into
amenities. In particular, I show that the role of waterfront locations in fostering convergence for
some redlined neighborhoods is driven by waterfront revitalization projects that have turned
around former industrial waterfronts. Likewise, tree coverage changes over time, and the
expansion of tree canopy has helped D-graded neighborhoods overcome the legacy of redlining.
This ties to a tradition of research in urban planning that studies public interventions aimed at
improving neighborhoods (see Zuk, Bierbaum, Chapple, Gorska, and Loukaitou-Sideris, 2018,
for a review).

Among economists, research on placed-based policies has mostly focused on infrastructure
investment and enterprise zones (Neumark and Simpson, 2015), although there are a few
studies on urban renewal plans (Rossi-Hansberg, Sarte, and Owens, 2010; LaVoice, 2019; Shi,
Hartley, Mazumder, and Rajan, 2022). A key reason why economics research on urban renewal
interventions targeting natural amenities is limited is the lack of data on relevant changes
in geography. To overcome that limitation, I collect new data on waterfront improvements
in abandoned industrial areas. The improvements led to the development of shoreline or
riverbank parks and improved waterfront access.

A second type of intervention I consider is expansions in tree canopy, thus connecting with
a broader literature on the impact of urban tree canopy. My contribution to this literature is
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twofold. First, I solve limitations on data availability of urban canopy by implementing a new
methodology to construct panels of canopy from aerial images. This builds on work by Yang,
Wu, Praun, and Ma (2009) and Bosch (2020), adding to it a method to automatize the creation
of training data that is transferable across periods leveraging visual graphic techniques. This
transforms a process conventionally applicable only to small areas into one that can be applied
to a large set of urban areas across multiple periods. The workflow can predict the presence
of tree coverage at the pixel level, even with limited training data. One of the main strengths
is its potential for widespread application, given that multi-spectral aerial imagery is publicly
available in multiple periods and geographic locations.

Second, I develop an instrumentation strategy to tackle endogeneity in changes in tree
coverage. This connects with the extensive literature on the impact of urban trees on economic,
social, and environmental outcomes.2 Only a handful of papers attempt to estimate the causal
impact of trees. For instance, Wachter and Wong (2008) does so by exploiting the design of
tree plantation initiatives in Philadelphia. Particularly close to this paper are Kondo, Han,
Donovan, and MacDonald (2017) and Han, Heblich, Timmins, and Zylberberg (2021), which
leverage exposure to a specific tree plague in a particular city as a source of reductions in tree
coverage. My instrumentation strategy exploits a different exogenous variation: the increases
in tree coverage associated with replacements induced by exotic tree plagues in areas where
susceptible tree species are prevalent.

The rest of the paper is organized as follows. I discuss the data construction in Section 3.
This describes the Census-to-Redlining Constant Crosswalks, the new procedure to match the
Census data and the holc maps. It then introduces the workflow used to predict tree canopy
in aerial images and the construction of the waterfront modifications data. I also describe how
to leverage the data on the presence of exotic tree plagues and their potential tree hosts to
construct an instrument for changes in the tree canopy.

Section 4 estimates the average persistence of redlining on home values, family income, and
neighborhood racial composition. To do so, I estimate a difference-in-difference that compares
neighborhoods subject to the most severe credit restrictions (D-graded or redlined) with nearby
areas experiencing less stringent policies (C-graded) before and after legislation prohibiting
redlining practices. The nearby D-C comparison minimizes endogeneity concerns as surveyors
considered them the most similar, and being nearby, they are also likely to share the same local
unobservables. The findings of Section 4, leaving aside methodological differences, align with
the recent literature on the persistence of redlining: decades after the outlawing of redlining
policies, D-graded neighborhoods still have a less white population, home values, and income.

The first significant departure relative to prior research is in Section 5, where I show that
redlining’s negative legacy is highly heterogeneous. By leveraging data on the location of

2For instance Pandit, Polyakov, and Sadler (2014), Morales (1980), Netusil, Chattopadhyay, and Kovacs (2010)
and Franco and Macdonald (2018) on housing prices; Holtan, Dieterlen, and Sullivan (2015) on social capital,
Hoffman, Shandas, and Pendleton (2020) on redlining and urban heat island effects or Kondo, Han, Donovan, and
MacDonald (2017) on crime.
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the shoreline, lakes, rivers, and parks, the results show greater convergence in demographic
composition and housing values for D-graded neighborhoods proximate to water and green
amenities.

Section 6, however, shows that what drives faster convergence in waterfront areas is not
water per se but interventions that turn it into an amenity. Neighborhoods that experience
reduced persistence are those whose waterfronts were improved and made accessible. The
D-C gaps for areas with modified waterfronts get reduced by around 70% -80% in all variables.
However, unmodified water features do not affect convergence significantly.

Section 7 shifts the focus to increased vegetation as a source of convergence. Tree planting
has the advantage of being a widespread intervention, yet it presents other challenges: complex
data construction and endogeneity concerns. I address these challenges using my novel panel
of tree canopy changes and instrumenting increases in tree canopy with tree replacements in
multiples of cut-down trees induced by exotic tree plagues in areas where susceptible tree
species are prevalent. My results demonstrate that increased vegetation allows D-graded
neighborhoods to converge. The paper concludes with Section 8.

2. The historical context of redlining

The Civil Rights Act of 1866 codified equal rights for all races, including regarding home
ownership. In 1917, in Buchanan v. Warley, the Supreme Court forbade local ordinances that
explicitly segregated population. Nevertheless, discriminatory and segregationist practices
within housing markets remained in place for much longer. These practices against minorities
operated through subtler means that circumvented these legal prohibitions, with redlining as
a prominent example.

Redlining arose during the housing crisis that followed the Great Depression. A typical
house valued at $5,000 in 1926 was only worth $3,300 in 1932, while home foreclosures rose
from 68,000 in 1926 to 250,000 in 1932 (Jackson, 1987). In 1933, more than 1,000 loans were
foreclosed daily, and half of the home mortgages were in technical default (Jackson, 1987;
Wheelock et al., 2008). The annual foreclosure rate continued to exceed 1% until 1935 and only
returned to 1926 levels by 1941 (Wheelock et al., 2008).

The administration initiated a series of reforms to stabilize the housing and mortgage
markets and assist distressed borrowers. The first attempt, the Federal Home Loan Bank Act,
arrived in July 1932 and established a system of Federal banks to act as discount banks for
home mortgages with a corresponding supervision system (the Federal Home Loan Bank
Board, fhlbb). However, of the 41,000 homeowners who directly applied for loans during
the first two years of the Act, only three were approved (Jackson, 1987). Effective housing
measures only started to be implemented after President Roosevelt took office in 1933.

Roosevelt’s New Deal administration created new institutions to intervene in the housing
and mortgage markets. The Home Owners’ Loan Corporation (holc) was established in 1933

and started to operate as part of the fhlbb to substitute for the inefficient loan provision of
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the Federal Home Loan Bank Act. Initially, it acted as a “bad bank” issuing bonds to buy
mortgages from distressed borrowers and provide them with better conditions.

The holc was conceived as a temporary emergency actor in charge of assisting borrowers
who could not access private refinancing mortgage markets. However, the magnitude of the
foreclosure crisis led to a sizeable intervention. Between 1933 and 1936, the holc provided
one million low-interest, self-amortizing, long-term, and uniform-payments mortgages. These
mortgages amounted to a total of over $3 billion and one out of five dwellings received holc

financing (Harriss, 1951; Hillier, 2003).
The scale of refinancing by the holc triggered concerns that mortgages could go foreclosed

even after refinancing, leaving the Government with assets whose value was unknown. In fact,
over the existence of the holc, 19% of its loans were foreclosed, with foreclosure rates being as
high as 40% in New York, New Jersey, and Massachusetts (Harriss, 1951). By mid-1935, with
one-third of the eventually foreclosed holc loans being already delinquent for several months,
the fhlbb established the City Survey Program, shifting the primary focus of the holc to this
new initiative. The goal was to develop a standardized system to assess the value of the real
estate now owned by the Government while ensuring the stability of the mortgage market.

With the establishment of the City Survey Program, the holc introduced a systematic
property appraisal process based on neighborhood characteristics.3 The surveys did not aim
to guide the holc refinancing, which was already almost complete, but rather to help manage
the portfolio of holc assets and guide the sale of the foreclosed properties (Fishback, Rose,
Snowden, and Storrs, 2022). Between 1935 and 1940, the holc evaluated neighborhoods in the
239 cities with a population greater than 40,000 inhabitants. The appraisal process lead to the
creation of the Residential Security Maps, commonly known as the redlining maps, due to the
ink used to color the neighborhoods deemed riskiest for lending purposes.

The holc surveyors worked with local appraisers and lenders to create the redlining
maps (Hillier, 2003; Winling and Michney, 2021). Following the fhlbb appraisal manual,
neighborhoods were classified into four categories reflecting the desirability of lending in
the area. These four categories were assigned the grades A, B, C, and D, from most to least
desirable, and were colored green, blue, yellow, and red on the maps. More specifically, the
fhlbb Appraisal Manual described the grades as follows (Hillier, 2005):

• A-graded, greenlined: “Best” neighborhoods were “homogeneous in demand in good
and bad times.”

• B-graded, bluelined: “Still Desirable”, “like a 1935 good automobile, but not what people
who can afford it are buying today.”

• C-graded, yellowlined: “Definitely declining” neighborhoods that were “suffering from
an infiltration of lower grade population.”

3Appraisals were common before the holc started to conduct them. The relevance of the holc appraisal system
was “the creation of a formal and uniform system of appraisal, reduced to writing, structured in defined procedures,
and implemented by individuals only after intensive training. The ultimate aim was that one appraiser’s judgment
of value would have meaning to an investor located somewhere else.” (Jackson, 1987, p. 197).
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• D-graded, redlined: “Hazardous” neighborhoods where “the things that are now taking
place in C have already happened.”

As evidenced by the area description files, the appraisal process reflected the institutional-
ized racism of the period resulting in the systematical undervaluation of black, immigrant,
Jewish, or racially mixed neighborhoods (Jackson, 1980; Hillier, 2003).4 For instance, in C- and
D- graded areas, there were “heavy concentrations of low grade aliens” as in Detroit, or in
Staten Island where “Italian infiltration depress residential desirability in this area.” “Slow
increases of subversive races” were taking place in Los Angeles and “coloured infiltration”
was “a definitely adverse influence on neighborhood desirability” in Brooklyn. Areas with a
“community of the best class of Negroes” as the historical upper-class black communities of
Jacksonville were also redlined.

According to Jackson (1987), the appraisal process was based on the prevalent ecological
and socioeconomic theory of neighborhood change at the time. Appraisers believed that
the racial composition of the neighborhood determined the housing value.5 They also saw
neighborhood decline as inevitable due to the increasing age and obsolescence of housing
and the consequent filtering towards lower-income groups. As a result, black and minority
neighborhoods would receive unambiguously the worst grades. Neighborhoods with low
rents and aging housing prone to filtering down soon would be in the second worst grade.
The best grades were reserved for the newer parts of the city and for areas that could protect
from the “infiltration” of population groups that represented “adverse influences” for housing
values stability (Hillier, 2003) through zoning restrictions or private covenants.6 Although
D-graded and C-graded areas shared similarities in neighborhood demographics and housing
characteristics, D-graded areas were the ones considered to constitute a lending risk for banks,
and the recommendation was that credit should be restricted or avoided.

While it is unclear how publicly available the holc maps were, the holc is regarded as
the primary actor behind the institutionalization of redlining due to the development of its
standardized appraisal process.7 The active refinancing program of the holc ended in 1936,
before the City Survey Program began. However, the collaboration of holc agents and local
brokers contributed to the homogenization of appraisal criteria, implying that active lenders
followed similar grading techniques (Winling and Michney, 2021).

The influence of neighborhood characteristics in appraisals was also shared by the Federal
Housing Administration (fha), created by the National Housing Act of 1934. Differently
from the holc, the fha was designed as a long-term agency to reform and stabilize the

4The area description files are available together with the redlining maps on the Mapping Inequality Project of
the University of Richmond (Nelson, Winling, Marciano, Connolly et al., 2017).

5The FHA (1936) appraisal manual mentioned that “the infiltration of inharmonious racial groups [...] tends to
lower the levels of land values and to lessen the desirability of residential areas.” (fha, 1936, p. 72).

6This has been corroborated by Hillier (2005), Fishback (2014) and Crossney and Bartelt (2005) since they show
that both the racial composition and housing characteristics were determinants of the grades in the particular cities
they study.

7Researchers like Hillier (2003) and Greer (2013) maintain that the maps were not diffused despite the high
demand for them, while others like Jackson (1980) and Woods (2012) defend the opposite.
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mortgage sector. It had two main goals: substitute for the collapsed private guaranty sector
by offering public insurance to private mortgages and incentivize residential construction
by directing attractive insured loans to new developments. By the late 1940s, the fha was
providing insurance for one-third of the new homes (Aaronson, Hartley, and Mazumder,
2021), and by 1972, the fha had insured mortgages for eleven million families (Jackson, 1987).
The fha contributed to the decay of core areas through its predilection towards single-unit
rather than multi-unit housing, by offering worse conditions for repair loans, and by virtually
only allowing insurance in suburban areas through its lending guidelines and construction
standards. Moreover, the National Housing Act established that only “economically solid”
projects could be insured, increasing the fha concern about neighborhood risk. As a result,
neighborhood risk ratings were employed from the onset of the fha (Fishback, Rose, Snowden,
and Storrs, 2022). This excluded minority neighborhoods and populations from mortgage
insurance.

Similarly to the Residential Security Maps, the fha created its own lending risk maps. Given
the simultaneity between the fha ratings and its insurance activities, research on redlining
would have ideally focused on this agency. However, the fha destroyed the maps when
facing lawsuits for discrimination. The justification to use the holc maps to study redlining is
rooted in the prevalent view that holc appraisal guidelines determined the fha ones (Hillier,
2003). Recent research indicates that the fha had access to the holc maps and that there was
constant communication between both agencies (Michney, 2022). Also, the surviving fha map
of Chicago is remarkably similar to the holc one (Aaronson, Hartley, and Mazumder, 2021).

One may never be able to positively assert whether the holc maps were publicly used or
not. Nonetheless, by reflecting the prevalent appraisal guidelines of America at that period,
including those present in the destroyed fha maps, the holc maps serve as an approximation
to the discriminatory lending practices of the time. Nevertheless, our results should not be
interpreted as an outcome solely attributable to the specific maps or the holc, but rather as
the consequence of the consistent and homogenized historic practice of redlining (Fishback,
LaVoice, Shertzer, and Walsh, Forthcoming).

The outlawing of redlining practices was a gradual process that started with the passing of
the 1968 Fair Housing Act, which prohibited all kinds of discrimination in housing markets.
However, community groups continued denouncing widespread wrongful credit denials in
minority neighborhoods. Tabulated mortgage data from the 1975 Home Mortgage Disclosure
Act (hmda) allowed these groups as well as Congress to substantiate ongoing housing
discrimination. This lead to the passing of the Community Reinvestment Act (cra) in 1977.
This effectively outlawed discriminatory lending based on neighborhood characteristics by
establishing that banks should assess and meet the financial needs of the low and moderate-
income neighborhoods of the communities they served. For this reason, in our empirical
analysis we focus on the 1977 passing of the cra as the key before-and-after event for our
difference-in-difference strategy. Nevertheless, the gradual nature of the legislation process
implies that neighborhoods would have began to gradually change a few years prior. And yet,
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despite its legal prohibition, the effects of redlining may endure due to its lasting impact on
segregation, disinvestment, and wealth inequalities. I now turn to describe the data that will
allow me to examine this persistence and how it varies with certain geographic amenities.

3. Data

This paper makes three data contributions. First, it leverages a new procedure to match
Census data with the holc maps without blurring spatial discontinuities in grade assignments.
Second, to assess changes in the geographical amenities of neighborhoods, it constructs a
new dataset that dates and geolocates waterfront renovations. Lastly, it implements a new
methodology exploiting machine learning and image segmentation to obtain panels of tree
coverage from aerial imagery. The study area is neighborhoods graded by the holc with
Census data for at least 80% of its area at the tract level in 1940.

Census-to-Redlining Constant Crosswalks

The Mapping Inequality project of the Digital Scholarship Lab of the University of Richmond
has digitized the holc maps from the National Archives (Nelson, Winling, Marciano, Connolly
et al., 2017).8 The result of the digitization is a collection of georeferenced maps that show
the location and shape of the neighborhoods delineated by holc surveyors. Accompanying
these maps are the grades assigned (A-B-C-D) and, if available, the area description files
detailing the surveyors’ rationale for these grades. For estimation purposes, neighborhoods are
matched to their corresponding 2010 msa and Census division.9 Appendix Table 8.3.1 shows
the holc cities considered, their corresponding 2010 msa, and the number of neighborhoods
with Census data for the 1940-2015 period. Appendix Table 8.3.2 shows the city-grade holc

neighborhoods distributions.
To explore the effects of redlining in neighborhoods holc maps are matched with

Census tract (1940-1980) and block-group level data (1990-2015) from the National Historical
Geographic System (nhgis). The analysis is restricted to this period because tract-level data is
only available from 1930 but with limited city coverage. Hence, setting 1940 as the initial period
allows for observing more cities.10 I address the misalignment between Census data and the
holc maps by constructing data at the holc neighborhood maps level with the use of a new
set of crosswalks, the Census-to-Redlining Constant Crosswalks. Data at the neighborhood
level is the weighted sum of the Census units data that compose the holc neighborhood, with

8When this paper was initiated (2018-2019), the count of digitized maps was slightly lower, leading to the
omission of some recent additions to the Mapping Inequality project.

9The 2010 definition is used for practical purposes since it is the definition that contains most of the graded
neighborhoods. The assignment is based on the largest spatial overlap.

10Data availability imposes the additional restriction that I cannot explore the effects of the introduction of
redlining and reduces the possibility of exploring pretrends to the set of cities that were surveyed by the census in
1930 and 1940. Krimmel (2018) performs this comparison and shows no different pretrends between neighbouring
D-C areas.
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weights equal to the area share of the Census unit that falls within the neighborhood and
belonged to a 1940 tract. To ensure neighborhoods are captured comprehensively since 1940,
the procedure imposes the additional restriction that at least 80% of the neighborhood had to
be covered by tracts in 1940.11

In contrast to assigning holc grades to Census units as in Hillier (2005), Appel and
Nickerson (2016) and Krimmel (2018) among others, my data construction process preserves
the original and sharp variation in assigned grades. It ensures a gradual change in the
characteristics of adjacent neighborhoods and eliminates the measurement error caused by
grade assignments. Hence, these crosswalks align with the requirements of the empirical
strategy. The only arising concern would be splitting a very heterogeneous Census unit into
different grades or if a graded neighborhood is composed of heterogeneous tracts. By the
design of the data sources, this is a minor concern since both Census and holc units were
drawn to capture homogeneous areas.12

Providing evidence on the relevance of the data construction process requires observing
reliable data at the holc level and at the Census unit level to be able to crosswalk it to the
graded neighborhood or assign to the unit the holc grade with the largest spatial overlap.
Due to the lack of data at the holc level, I take advantage of high-resolution (100m2 pixels)
gridded population data. This data allows obtaining, with the same source and procedure, a
reference-true value for the original neighborhood and Census units. To assess the impact of the
data construction, I then estimate, with these three different datasets for the 2010 population,
a regression of population counts and density on a D-graded variable and border-pair fixed
effects. Appendix Tables 8.3.13 and 8.3.14 show that using Census-to-Redlining Crosswalks
always yields the closest estimates to the true one, and differences can be substantial, as in the
magnitudes for population counts.

Geographical amenities

Next, I use data for water and parks as natural amenities. The choice is motivated by the
evidence showing their relevance for neighborhood outcomes and by the fact they are the
amenities with enough variation among nearby areas (Jackson, 1987; Brueckner, Thisse, and
Zenou, 1999; Rappaport and Sachs, 2003; Lee and Lin, 2018), or the survey on the impact of
parks by Crompton and Nicholls (2019)). Data on water features is collected from the Coastal
Geospatial Data project of the National Oceanic Atmospheric Administration (NOAA) and
includes the shoreline, Great Lakes, any other lake, and major rivers. For parks, the data
relies on the ESRI layer on parks. To capture meaningful natural amenities data for lakes and
parks is restricted to the set of lakes named “lake” or “pond” and to parks containing “parks”,
“gardens” or “forests” as part of the name.

11See Appendix 8.1 for additional details on the Crosswalk construction.
12There is evidence of heterogeneity within neighborhoods in the area description files. However, entropy

indices (not shown) in both 1940 and 2015 were, on average, around zero, meaning that the Census units in
neighborhoods have essentially a very similar composition in terms of population, home values, and family income.
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A neighborhood is defined as having water and parks natural amenities when at least 20%
of its area falls within a 500-meter buffer around any of the features.13 The area threshold
was determined by visual inspection. Low thresholds do not capture meaningful situations,
whereas excessively high thresholds select very specific neighborhoods. The 20% criterion
balances both: it is stringent enough to capture the substantial presence of amenities and
differences among neighboring areas, yet not so stringent as to raise concerns about sample
selection.

Waterfront modifications

Also, I hand-collect and geolocate data on waterfront modifications in the cities under study.
This dataset was created using data from a variety of sources, including departments of parks,
local history and news, tourism offices, and redevelopment and planning agencies. In most
cases, the redevelopment plans resulted in new parks, greenways, or promenades that can be
easily geolocated. In other cases, the project districts or the coordinates of the created place
serve as geolocation.14 Neighborhoods with a modified waterfront are the ones that intersect
a 500-meter buffer around a geolocated modification. Appendix Table 8.3.3 contains the list of
the improvements. A detailed description of the data is available in Appendix 8.2.

Tree canopy

Typically, research exploring the role of trees has relied on tree surveys with coverage restricted
to particular cities and, in very few cases, a panel dimension. Moreover, recent machine
learning algorithms require training data whose availability at high-resolution and large scales
is a recent phenomenon (near-infrared light, nir) or, due to its costs, its geographic and time
availability is restricted (Lidar). To overcome this limitation, I propose a new method to train
data from older periods with recent nir data and produce the first panel of tree coverage in
more than 30 us metropolitan areas.

This paper implements the pixel classification algorithms developed by Yang, Wu, Praun,
and Ma (2009) and Bosch (2020) on the National Agricultural Imagery Product (naip) to
construct data on the tree coverage. The naip is a program developed by the US Department
of Agriculture since 2003. It acquires and publishes high-resolution (1m2 or less) aerial images
taken during the agricultural growing season every three years since 2009. The images contain,
for every 1m2 pixel, the red-green-blue (rgb) channels of the underlying color and, for recent
years, also the non-visible naip band. Due to the time cost of predicting tree canopy, I limit
the analysis to two periods and maximize the temporal interval, which ensures observing

13Distances are avoided due to the irregular shapes of graded neighborhoods. The placement of centroids, as
averages of vertices, may not necessarily lie within the neighborhood boundaries, thus failing to capture the actual
presence of amenities within the neighborhood.

14These modifications are restricted to those that were direct attempts by cities, which means that waterfronts
that might have revitalized from the unplanned action of individuals by setting commercial or leisure venues are
not considered.
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meaningful tree canopy changes. Given that the first available year differs across states, the
first period ranges between 2003/2007, and the second one between 2014/2015. Appendix
Table 8.3.4 shows the periods for every city considered.

In contrast to most tree detection algorithms that are intensive in data requirements, Yang,
Wu, Praun, and Ma (2009)’s method has the advantage of achieving similarly good results
using only rgb data. The prediction accuracy relies on training the algorithm with precise
ground-truth masks. One of the methods that is used to produce training data leverages using
limitedly available nir, which captures alive vegetation due to the reflectance properties of
photosynthesis. To overcome this limitation, I employ various visual graphic techniques using
modern nir to train models that can predict periods without this light. As Yang, Wu, Praun,
and Ma (2009)’s algorithm relies exclusively on RGB colors, I avoid potential inaccuracies
caused by different colors across periods by equalizing the lightness and color histogram of all
first-period images to their counterpart in the second period – the one with nir data and hence
used as training – as a pre-step. To find the tree pixels in the training images, I first compute
the widely used normalized difference vegetation index (ndvi) as NIR−R

NIR+R . The ndvi ranges
from -1 to 1, with higher values representing the densest and most alive vegetation. To account
for the sensitivity of the ndvi to local and vegetation conditions, the threshold that separates
not-tree and tree pixels in the training data is determined by finding the two ndvi values that
maximize the variance between three-pixel classes and minimize the within-class variance (i.e.,
Otsu’s thresholding). Since most urban areas exhibit mixed features characterized, double
segmentation guarantees the highest threshold captures the class with the most alive (i.e.,
higher chlorophyll content) and dense vegetation, which corresponds to trees.15

Exposure to exotic tree plagues

I construct the change in exposure to plagues by merging the data on county presence of
plagues as of December 2015 compiled by Fei, Morin, Oswalt, and Liebhold (2019) and
hosts potential distribution of Wilson, Lister, Riemann, and Griffith (2013). The data on the
first detection is supplemented with data from multiple sources to obtain the most accurate
detection date possible and at the highest geographic resolution. The host species distribution
is a raster for each tree specie, in which each 250× 250m pixel represents the predicted live-tree
basal area of that specie using reference data between 2000-2009. Of the total 162 potential
host species of the plagues, Wilson, Lister, Riemann, and Griffith (2013) provide the species
distribution of 130. Potential host exposure in a neighborhood is computed as the ratio of
the total basal area of potential hosts of a particular plague to detected tree pixels in 2000.
Appendix Figure 8.3.1 shows the county distribution of the total number of selected plagues
and Appendix Figure 8.3.2 illustrates the distribution of potential hosts of one of these plagues,
the Emerald Ash Borer, in the city of Chicago.

15For further details, see the original paper by Yang, Wu, Praun, and Ma (2009) and the implementation
developed by Bosch (2020). In Miñano-Mañero (2023), I describe in detail the relevance of the methodology.
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Sample and variables of interest

The complete sample consists of 3,779 graded neighborhoods per decade, with approximately
62% having natural amenities. Of those, 7% have a modified waterfront. In terms of population,
the data accounts for nearly 19% of the us population in 1940. However, the population is not
evenly distributed among categories: despite accounting for 66% of graded neighborhoods,
D and C areas contain over 81% of the sample population.There are also racial disparities in
population distribution: while 97% of the black population in the sample concentrates in D
and C areas, only 3% is in the best two categories. The population distribution corroborates
the fact that redlining mainly affected black communities.16

This paper focuses on the evolution of the white population share, home values, and family
income because. As discussed in Section 2 these variables determined the assigned grade, they
are more likely to have been influenced by redlining, and natural amenities can affect their
evolution (Villarreal (2014), Lee and Lin (2018), Heblich, Trew, and Zylberberg (2021)). Section
2 already addressed the racial aspect underlying redlining.17 Next, I focus on home values
measured as the percentage of owner-occupied housing units that are on and above the msa

median home values.18 Because housing accounts for a large portion of household wealth, the
persistent wealth gap between black and white populations may be related to the impact of
redlining on segregation and depressed home values. Finally, family income is measured as
the percentage of families that are on and above the msa median family income.19

4. The legacy of redlining

The primary identification challenge to estimating the persistence of redlining stems from the
design of the holc grading process. As discussed in Section 2, the assigned level of credit
restrictions reflected neighborhoods’ housing and demographic characteristics by the late 1930s.
Because neighborhoods were already different when redlining was introduced, a traditional
differencing approach will not be able to distinguish if D-graded neighborhoods evolve
differently from the rest because they were on different paths to start with or because they
were redlined. Appendix Tables 8.3.8 and 8.3.10 show that the discontinuities in population,
housing values, and income for each grade in 1940 continued to persist by 2015. Appendix
Table 8.3.11 also highlights that D-graded neighborhoods in 1950 had the higher share of their

16See Appendix Tables 8.3.5, 8.3.6 and 8.3.7.
17I follow only the white population because the population from other races affected by redlining, besides

white and black populations, is negligible and concentrated in particular areas. Thus, the key differences in terms
of population are between the black and white populations.

18For each decade, msa medians are computed from tracts/block groups with centroids falling within the msa.
This approach continually incorporates new areas into the msa, ensuring that newly developed regions, capable of
exerting an upward influence at the msa level, are not overlooked. As these variables are reported in bins, I assign
midpoints except for the highest bin, which is capped. Subsequently, I calculate medians using these midpoints
and bin-specific housing unit/family counts as weights.

19Family income is defined as family income in the previous year. It is only available since 1950.
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neighborhoods falling below the msa mean in terms of key socio-economic indicators and that
most of them continued to lag behind the msa means in 2015.

Overcoming the identification challenges caused by the holc grading process requires
comparing similar areas that faced different levels of credit restrictions. Motivated by the holc

grades, only C-graded areas constitute the control group since they were the areas considered
more similar to D-graded ones and to be in the previous step before converging to a D zone.
Evidence in Appendix Tables 8.3.8 and 8.3.9 provides additional supporting evidence showing
the D and C neighborhoods have the smallest differences in population, housing, and income
variables in 1940 and 1950. The D-C comparison has the additional advantage of capturing a
discrete jump in the credit policy: from complete credit restriction (D) to conservative lending
(C) as mentioned by Krimmel (2018).

The D-C comparison is performed at two different levels. The first level restricts the analysis
to neighborhoods within the same msa.20 Adding msa fixed effects to the diff-in-diff equations
controls for msa unobserved and time-invariant characteristics, while year fixed-effect control
for common time-trends. The second level imposes further restrictions since, even within
an msa, areas may evolve differently subject to other unobserved factors. To overcome the
concern I follow the usual approach in redlining literature that restricts the analysis to adjacent
D-C neighborhoods sharing the longest borders, similar to Aaronson, Hartley, and Mazumder
(2021) and Krimmel (2018).21 D-C bordering areas represent sudden changes in grades but,
being adjacent areas, they share the same unobservable and local characteristics, and thus, the
grade assignment is as good as random.22 The procedure resembles regression discontinuities
usually employed in the education economics literature that exploit falling a different sides of
a grade cut-off.23 In the redlining setup, there is a similar grade cut-off between receiving the
worst credit rating (D) and the second worst (C), and the threshold from the cut-off is defined
geographically by being adjacent and sharing the longest border in a similar fashion as in
border regression discontinuity. Adding border-pair fixed effects guarantees any common and
time-invariant unobservable factor for the pair of neighborhoods is controlled for.24

One requirement for the empirical design to isolate the effect of redlining is that there is a
sharp variation in the assigned grade at the border, but neighborhood characteristics change
gradually. This requirement guided the data construction. As discussed in Section 3, data is

20The term city is used to reference the maps designation of cities. These surveyors’ definitions of cities are
cumbersome since they tend to divide areas in different maps (i.e., the 5 boroughs of New York). Hence, holc

neighborhoods are matched to the corresponding msa (2010 definition) to avoid these situations.
21The choice of neighboring areas on the basis of border length is made in this paper because, given the

irregular shapes of holc neighborhoods, using centroids or coordinates as Krimmel (2018) does not allow to make
a meaningful restriction.

22Appel and Nickerson (2016) follow a similar approach but comparing D areas to any other graded adjacent
area. Their strategy exploits very different policies but also compares very different areas, threatening its validity

23See for instance Ost, Pan, and Webber (2018).
24Aaronson, Hartley, and Mazumder (2021) follow a more strict design and construct small buffers at each side

of the C-D border. However, following such a procedure would not allow the incorporation of amenities in the
analysis since it is unlikely to find geographic variation at small distances.
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constructed at the original holc graded neighborhood level to preserve the original sharp
variation in grades, but by assigning Census units to graded neighborhoods, unobservable
neighborhood characteristics change gradually at the border.

The formal goal is to estimate the persistence of redlining using a diff-in-diff with two
dimensions: redlining and the passing of the cra. Let yimt be the relevant dependent variable
in holc neighborhood i at msa m in year t, Ri be the redlining grade (1 if D-graded, 0 if
C-graded) and Post1977 represent the passing of the cra (1 from 1980 onward, 0 until 1970),
then the following equation estimates the average persistence of redlining:

yimt = β0 + β1Ri + β2(Ri × Post1977) + αim + γt + ϵimt (1)

where αim represents either msa fixed effect or border-pair fixed effects, γt are year fixed
effects, and ϵimt is the error term.25 In this regression, the coefficient of interest would be β3:
it reflects the catching up between D and C areas after the outlawing of redlining.

The estimates of Equation 1 at the within msa and border-pair are shown in Table 1 and
Table 2 respectively. Both tables lead to the same conclusions. Focusing on the first row, the
coefficient for being D-graded is negative and statistically significant: β1 < 0 in Equation 1.
This shows that, during the years of redlining (1940-1970), there were negative significant
gaps for D areas, compared to their C neighbors. The coefficient of the interaction between
D-grade and the passing of the cra is, however, positive and strongly significant: β2 > 0 in
Equation 1. This coefficient indicates that, after the removal of redlining, there is some degree
of convergence for all the variables. However, adding up the two coefficients (i.e., β1 + β3 in
Equation 1) shows that the D-C gaps are still present after the removal of redlining. Hence,
the effects of redlining do not disappear and are persistent over time. Complementing the
results of Section 3 on the magnitude of errors in estimation induced by assigning grades to
tracts, Appendix Tables 8.3.15 and 8.3.16 provide additional evidence by estimating Equation 1

with a D-C sample in which each 1940 tract is assigned the holc grade with the largest spatial
overlap. Comparing both sets of results implies that assigning grades to Census units biases
downward average persistence, consistent with the experiment of Section 3.

From Table 1 and 2, average persistence can be computed by taking the ratio of the average
gap after the passing of the cra and the average gap during redlining ( i.e., β1+β3

β1
in Equation

1). Given that the estimates of the within msa comparison can be biased in the presence of
local unobserved factors, focusing on the border-pair results, shows that 53% of the gap in the
white population, 32 % in home values and 72% of income persists after outlawing redlining.

25Note that, in my specifications with border-pair fixed effects, msa fixed will be fully absorbed by the
border-pair ones. Moreover, since year fixed effects are introduced, the variable Post1977 would be colinear to these
fixed effects. Given the data construction process, the number of observations per decade and msa is relatively low,
and hence msa-year fixed effects to control for time-trends cannot be included since there is not enough variation
to estimate them. For the same reason, standard errors cannot be clustered at the msa-year level since clustering
requires having enough observations per cluster. As a result, to take into account spatial correlation, the standard
errors are clustered at the Census division-year level.
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Table 1: Persistent effects of redlining, D-C neighborhoods in the same msa

(1) (2) (3)
Dependent % housing units above % families above msa

variables % white msa median home value median family income

D-graded -13.40∗∗∗ -18.76∗∗∗ -11.46∗∗∗
(1.12) (1.33) (0.74)

D-graded × Post1977 3.81∗∗∗ 11.27∗∗∗ 3.14∗∗∗
(1.38) (1.82) (0.92)

Area FE msa msa msa

Mean Dep. Var. 66.36 44.05 42.82
Observations 22,401 22,172 19,885
Adjusted R2 0.37 0.24 0.28
Adjusted within R2 0.04 0.07 0.07
Average Persistence 72% 40% 73%

Notes: All columns contain msa and year fixed effects, so coefficients are estimated on the basis of all D-C
neighborhoods within msa. The Post1977 period is 1980-2015. Average persistence is computed as the ratio of the
D-C gap after the passing of the cra to the gap before. Family income is only available starting with the 1950

Census columns (1) and (2) are estimated for 1940-2015 and column (3) for 1950-2015. Standard errors are clustered
by Census division-year and ***, **, * indicate significance at the 1, 5, and 10 percent.

Table 2: Persistent effects of redlining, bordering D-C neighborhoods

(1) (2) (3)
Dependent % housing units above % families above msa

variables % white msa median home value median family income

D-graded -8.23∗∗∗ -10.75∗∗∗ -6.13∗∗∗
(0.64) (0.91) (0.44)

D-graded × Post1977 3.88∗∗∗ 7.34∗∗∗ 1.71∗∗∗
(1.00) (1.14) (0.59)

Area FE D-C pair D-C pair D-C pair
Mean Dep. Var. 62.36 38.98 39.01
Observations 11,030 10,925 9,798
Adjusted R2 0.73 0.53 0.63
Adjusted within R2 0.03 0.04 0.05
Average Persistence 53% 32% 72%

Notes: All columns contain border-pair and year fixed effects, so coefficients are estimated on the basis of within
D-C pairs. The Post1977 period is 1980-2015. Average persistence is computed as the ratio of the D-C gap after
the passing of the cra to the gap before. Family income is only available starting with the 1950 Census columns
(1) and (2) are estimated for 1940-2015 and column (3) for 1950-2015. Standard errors are clustered by Census
division-year and ***, **, * indicate significance at the 1, 5, and 10 percent.
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Figure 1: Timing of the effects

Figure A: White Share Figure B: Home Values

Figure C: Family Income

Notes: this figure shows the coefficient β3 of estimating: yimt = β0 + β1Ri + β2Post1977 + β3(Ri × Post1977) + αij +

ϵimt, where Post1977 takes values zero between 1940-1970 and a different value for each decade after the removal
of redlining. The standard errors of the regression were clustered by Census division-year. Estimated on the
bordering D-C sample. Dependent variable in Figure A is the share of white population; percentage of housing
units on and above the msa median home value in Figure B; percentage of families on and above the msa median
family income in Figure C.
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To discern the timing pattern behind the effects, I modify Equation 1 by letting the Post1977

dummy take value zero for the redlining year (1950-1970) and a different value for each decade
afterwards26. The interaction between D-grade and the new post variable will show the yearly
change in the gap, relative to the years when redlining was legal. The estimated coefficients
of this interaction for each variable and the 95% confidence intervals are shown in Figure
1. Convergence in the share of white population occurs gradually and spreads over time.
However, for home values and income the effects of removing redlining occur as soon as it
is prohibited because the 1980 coefficient is positive and statistically significant.27 For home
values most of the convergence is happening in recent years, while for family income the trend
is almost flat until 2015. 28

5. The role of water and parks in the legacy of redlining

The findings in Section 4 are consistent with redlining literature and capture average
persistence. However, estimating average effects makes it difficult to conclude that redlining
still affects all neighborhoods to the same degree: the persistence may only occur in certain
areas or under certain conditions.

This section departs from this conventional perspective by exploring if water and park
amenities mitigate the redlining effects. Introducing water and park amenities in the
framework is motivated by the literature showing they determine neighborhood long-run
trajectories and explain the persistent spatial inequalities. The relationship is modeled by
introducing an additional dimension representing natural amenities (Ai) in Equation 1:

yimt =β0 + β1Ri + β2Ai + β3(Ri × Ai) + β4(Ri × Post1977)+

β5(Ai × Post1977) + β6(Ri × Post1977 × Ai) + αim + γt + ϵimt
(2)

where all variables are defined as in Equation 1. The main coefficient of interest is β6 since
it will capture if the catching-up is faster for D-graded areas with water and parks natural
amenities.

Table 3 and Table 4 show the results of estimating Equation 2 at the msa and bordering
level, respectively. The second and third rows reveal the coefficient for the impact of water
and park amenities during the years of redlining. When redlining was in place, being nearby
amenities increased the D-C gaps. At the border-pair level, C-graded neighborhoods with

26Instead of including year fixed effects, this variation adds the newly defined dummy Post1977, which is
virtually the same as the fixed effects

27Additional supporting evidence for is in Appendix Tables 8.3.17 and 8.3.18, where Equation 1 is estimated
restricting the Post1977 to 1980. The coefficient of the interaction with Post1977 is only significant for home values
and family income.

28For income, there is no such a clear time trend. However, this is not necessarily wrong and would be consistent
with neighborhood change and household sorting. The passing of the cra could be leading to faster effects in
terms of population and values and, as these effects take place, they will affect the income of the families that
decide to move to a neighborhood.
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Table 3: Natural amenities mitigate persistence, D-C neighborhoods in the same msa

(1) (2) (3)
Dependent % housing % families
variables % white units above above msa

msa median median family
home value income

D-graded -13.06∗∗∗ -15.63∗∗∗ -10.14∗∗∗
(1.01) (1.30) (0.78)

D-graded × Post1977 3.90∗∗∗ 8.33∗∗∗ 2.33∗∗
(1.48) (1.86) (1.00)

Water or park amenities 2.32∗∗∗ 2.11∗∗ 1.18∗∗
(0.64) (1.03) (0.52)

Water or park amenities × Post1977 3.54∗∗∗ 0.87 1.73∗
(1.00) (1.64) (0.95)

D-graded × Water or park amenities -0.64 -5.06∗∗∗ -2.15∗∗∗
(1.16) (0.86) (0.64)

D-graded × Water or park amenities × Post1977 -0.32 4.59∗∗∗ 1.18
(1.67) (1.38) (0.94)

Area FE msa msa msa

Mean Dep. Var. 66.36 44.05 42.82
Observations 22,401 22,172 19,885
Adjusted R2 0.38 0.24 0.28
Adjusted within R2 0.04 0.07 0.08
Average Persistence Water or Parks 74% 38% 71%
Average Persistence No Water nor Parks 70% 47% 77%

Notes: All columns contain msa and year fixed effects, so coefficients are estimated on the basis of all D-C
neighborhoods within msa. The Post1977 period is 1980-2015. Water or park amenities is a dummy variable that
takes value one for those neighborhoods in which the 500m buffers around water features or parks cover at least
20% of the area. Average persistence is computed as the ratio of the D-C gap after the passing of the cra to the gap
before for areas with and without water or parks Family income is only available starting with the 1950 Census
columns (1) and (2) are estimated for 1940-2015 and column (3) for 1950-2015. Standard errors are clustered by
Census division-year and ***, **, * indicate significance at the 1, 5, and 10 percent.
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Table 4: Natural amenities mitigate persistence, bordering D-C neighborhoods

(1) (2) (3)
Dependent % housing % families
variables % white units above above msa

msa median median family
home value income

D-graded -7.92∗∗∗ -9.23∗∗∗ -5.51∗∗∗
(0.98) (1.05) (0.67)

D-graded × Post1977 2.44 5.55∗∗∗ 1.15
(1.48) (1.35) (0.94)

Water or park amenities -0.89 -1.86∗ -1.65∗∗
(0.93) (1.06) (0.65)

Water or park amenities × Post1977 2.50∗ 2.50 2.27∗∗
(1.30) (1.62) (1.04)

D-graded × Water or park amenities -0.58 -2.63∗∗∗ -1.11
(1.17) (0.79) (0.70)

D-graded × Water or park amenities × Post1977 2.55∗ 3.13∗∗ 1.06
(1.49) (1.37) (1.06)

Area FE D-C pair D-C pair D-C pair
Mean Dep. Var. 62.36 38.98 39.01
Observations 11,030 10,925 9,798
Adjusted R2 0.73 0.53 0.63
Adjusted within R2 0.04 0.05 0.06
Average Persistence Water or Parks 41% 27% 67%
Average Persistence No Water nor Parks 69% 40% 79%

Notes: All columns contain border-pair and year fixed effects, so coefficients are estimated on the basis of within
D-C pairs. The Post1977 period is 1980-2015. Water or park amenities is a dummy variable that takes value one
for those neighborhoods in which the 500m buffers around water features or parks cover at least 20% of the area.
Average persistence is computed as the ratio of the D-C gap after the passing of the cra to the gap before for areas
with and without water or parks. Family income is only available starting with the 1950 Census columns (1) and
(2) are estimated for 1940-2015 and column (3) for 1950-2015. Standard errors are clustered by Census division-year
and ***, **, * indicate significance at the 1, 5, and 10 percent.
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amenities would also experiment with lower home values and family income. Given that
C-graded near amenities within the msa exhibit the opposite situation, the border-pair effect
could be driven by spillovers from their D-graded pairs. The negative signs do not necessarily
challenge the hypothesis that amenities can mitigate the legacy of redlining, as their impact on
neighborhoods can change over time rather than represent other instances of path dependence.

The triple interaction at the border pair shows that water and park amenities significantly
mitigate the persistence of redlining in population and housing values. The lack of effect on
income is explained by the fact that neighborhood change is a medium-long run phenomenon
and household sorting depending on income takes place on a longer period, when the share
of white population and home values have already changed. In fact, the timing pattern for
income suggests in Figure 1, which is actually driven by D-graded areas by water or parks is
consistent with this process of household sorting. Within msa, convergence is only significantly
stronger for home values. The lack of effect for white share relates to the redlined cities having
high proportions of black population or experimenting with black inflows during the period.

From the point estimates of Equation 2, the degree of persistence for areas with and without
amenities can be estimated taking the ratio of the average gap within subgroup after the cra

to the same ratio during redlining (i.e., β1+β3+β4+β6
β1+β3

for areas with amenities and β1+β4
β1

for
areas without). The results in Table 4 imply that the presence of natural amenities is not
enough to achieve full convergence but it reduces persistence to 41% in population and 27 %
in home values. This contrasts with the average persistence in Section 4 of 53% and 32% as
observed in Section 4, and 69% and 40% for areas lacking such amenities.

Robustness

To assess the robustness of the results, I perform a series of tests shown in the Appendix.
First, I estimate Equation 2 using placebo data. Placebo data is obtained by creating a
random sequence of holc grades while keeping the grades’ proportions in the entire sample.
After defining the placebo grades, the same adjoining-longest border criterion of the paper
determines the placebo D-C pairs. Results are shown in Appendix Table 8.3.19. None of
the placebo D-grade coefficients are statistically significant, reinforcing the validity of the
results. Significant effects are only found for natural amenities, which would have a positive
and statistically significant effect after the passing of the cra and a negative one during
the redlining years. This finding supports the hypothesis that natural amenities impact
neighborhood trajectories and that their effect can change over time.

The 20% threshold to define water and park amenities was chosen to balance capturing
meaningful natural amenities without concerns of sample selection. Two strategies assess the
robustness of this definition: using different thresholds or implementing a new definition
capturing the same situations (i.e., meaningful but not restrictive).29 To approximate the
second situation, water and park amenities are redefined as the situation in which the share

29Results using a 10% and a 30% threshold can be found in Appendix Tables 8.3.22,8.3.23, 8.3.24 and 8.3.25.

21



of a neighborhood covered by any water feature or park is above the msa median coverage
for that feature, weighted by neighborhood area. The new definition captures meaningful
amenities since they are above the median for the msa and avoids selection issues since it
considers all areas above the median. Appendix Tables 8.3.20 and 8.3.21 show the results with
this definition. The main conclusions remain unchanged with the new definition except for
the absence of a significant interaction between D-graded, natural amenities and the cra in
the share of the white population. Because the previous result was marginally significant and
driven by recent years, changing the definition of water and park amenities may affect it.

6. Moulding neighborhood geography: waterfront renovations

The previous results indicate that water and park amenities mitigate the persistence of
redlining, aligning with the literature documenting amenities as sources of persistent spatial
differences. The following section departs conceptually from that literature by showing that
natural amenities are not immutable but can be shaped through human intervention. While
water and park amenities have a static and permanent component –i.e., their location – they
have other aspects that can change. For instance, accessibility to water amenities and their
utility improves by creating waterfront promenades, rehabilitating abandoned structures, or
with brownfield cleanups.

The analysis in this section focuses on waterfront redevelopment plans that have occurred
since the 1970s. These plans targeted former industrial or commercial zones left abandoned,
polluted, and inaccessible due to shifts in industrial locations. Examples include Boston’s
North End, whose waterfront was once a major commercial and industrial area before being
abandoned in the 1960s and 1970s. The Baltimore Inner Harbor followed a similar path,
losing relevance after the introduction of container ships, as they could no longer dock there
due to their size. City authorities established a series of redevelopment plans in these areas
that included rehabilitating abandoned wharves and structures and creating and improving
waterfront access (i.e., the creation of the Christopher Columbus Waterfront Park in North
End). Both areas redeveloped quickly as a result of these strategies. These two stories illustrate
that modifying water amenities is feasible and strongly impacts neighborhood trajectories.
Following the success of Baltimore and Boston, other us cities adopted similar strategies to
redevelop former industrial waterfronts.

In the same fashion as in the previous sections, the relationship between the persistence
of redlining, the presence of water amenities, and their modifications can be expressed by
adding an additional dimension to the diff-in-diff:
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yimt =β0 + β1Ri + β2Ai + β3(Ri × Ai) + β4(Ai × Wi) + β5(Ri × Ai × Wi) + β6(Ri × Post1977)+

β7(Ai × Post1977) + β8(Ai × Wi × Post1977) + β9(Ri × Ai × Post1977)+

β10(Ri × Ai × Wi × Post1977) + αim + ∑
k

βkPimt + γt + ϵimt

(3)
where Wi is an indicator for waterfront redevelopment projects, Ai captures water amenities
and Pimt are the diff-in-diff counterpart for the presence of parks. The rest of the variables
are defined as in the previous equations.30 Because modifications only happen in areas with
water and park amenities, only the interactions between Ai and Wi appear. The coefficient β10

represents the catch-up for areas with modified waterfronts compared to the convergence for
areas with unmodified water amenities.

The results of estimating Equation 3 within msa are shown in Table 5.31 While the
interaction between D-graded, unmodified amenities and the outlawing of redlining is no
longer significant, except for home values, the coefficient with modifications is large and
significant. The implication here is that the mitigation of persistence is not a universal outcome
for all amenities; rather, the driving force behind these effects is the modified and revitalized
amenities. In fact, for neighborhoods with waterfront modifications persistence gets reduced
to -182% in white population, 12 % in home values, and -24% in family income, while for areas
without improved waterfronts persistence is still 66% in population, 64% as in home values
and 82% in family income. Notice that the negative persistence in home values and family
income implies D-graded neighborhoods with modified waterfronts have largely overcome
the legacy of redlining.

Robustness

Given that these waterfront modifications have been occurring since the 1970s, the results in
Table 5 could capture the tendency of natural amenities to change over time rather than the
effect of the modifications. To exclude the possibility, Equation 2 is estimated by adding natural
amenities-year fixed effect to eliminate variation generated by these tendencies. Appendix
Tables 8.3.26 and 8.3.27 show that the previous results remain unchanged even after including
these fixed effects to absorb the time-trends.32 Hence, adding an amenities-year trend does

30Modifications in this definition do not account for the timing. Since these modifications are relevant after
the 70s, coefficients that do not interact with the Post1977 variable will capture the situation of areas that will
experiment with a waterfront redevelopment but have not been modified yet.

31Given that modified waterfronts were usually industrial or commercial areas that separated from the rest of
the city, affected neighborhoods also tended to be separated or surrounded by D neighborhoods since these areas
were the oldest part of the cities, inhabited by low-income population working on those industries and also because
industrial and business encroachment was considered an adverse influence for surveyors and were associated with
the worst grade. As a result, this equation can only be estimated within msa.

32Notice that in this regression the interaction between natural amenities and Post1977 is not included since it
would be collinear to the amenities-year fixed effect.
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Table 5: Waterfront modifications drive the effect of water amenities

(1) (2) (3)
Dependent % housing % families
variables % white units above

above msa

msa median
median family
home income
value income

D-graded -12.53∗∗∗ -14.75∗∗∗ -9.95∗∗∗
(1.00) (1.33) (0.78)

D-graded × Post1977 4.17∗∗∗ 8.19∗∗∗ 2.72∗∗∗
(1.43) (1.75) (1.00)

Water amenities 1.68∗ 1.23 1.99∗∗
(0.99) (1.12) (0.80)

Water amenities × Post1977 5.38∗∗∗ 1.69 0.79
(1.77) (1.92) (1.16)

D-graded × Water amenities 3.71∗∗ -1.66 0.80
(1.47) (1.25) (1.05)

D-graded × Water amenities × Post1977 -1.20 -2.24 -1.07
(2.83) (2.10) (1.57)

Water amenities × Modification 2.88 -0.20 -4.28∗
(2.54) (3.15) (2.52)

Water amenities × Modification × Post1977 -5.12 4.15 0.53
(5.26) (4.86) (4.61)

D-graded × Water amenities × Modification 4.08∗∗ -4.64 -1.41
(1.66) (6.77) (2.83)

D-graded × Water amenities × Modification × Post1977 10.40∗∗∗ 12.64 11.46∗∗
(3.00) (7.75) (4.68)

Area FE msa msa msa

Park controls YES YES YES
Mean Dep. Var. 66.36 44.05 42.82
Observations 22,401 22,172 19,885
Adjusted R2 0.38 0.24 0.29
Adjusted within R2 0.05 0.08 0.08
Average Persistence Modified -182% 12% -24%
Average Persistence Unmodified 66% 64% 82%
Average Persistence No Water nor Parks 67% 44% 73%

Notes: All columns contain msa and year fixed effects, so coefficients are estimated on the basis of all D-C
neighborhoods within msa. Post1977 is defined from 1980-2015. All columns control for parks ( a dummy with
value one when at least 20% of the neighborhoods’ area is covered by the 500m buffer around the parks) and its
interactions with being D-graded and Post1977. Water amenities is a dummy variable that takes value one for those
neighborhoods in which the 500m buffers around water features cover at least 20% of the area. Modification is an
indicator for waterfront redevelopment projects (1 if the neighborhood falls within the 500 meter buffer around the
project, 0 otherwise). Standard errors are clustered by Census division-year and ***, **, * indicate significance at the
1, 5, and 10 percent.
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not absorb waterfront modifications.33

The definition of modifications used in Table 5 is static. By not considering the time
when the modification happens, it pools modified and unmodified areas together. To explore
the robustness of the results, I estimate a variation of Equation 3 using the same spatial
overlap criterion but adding the timing so that they only appear as they happen. Given that
these revitalization projects occurred only after the 70s,34 the regression does not include
modification variables not interacted with the Post1977. The results with the new definition in
Table 8.3.29 are nearly identical to the ones with the static definition.

A natural concern behind the results is that areas with modifications may systematically
differ from the rest just before the redevelopments. To provide evidence on the pre-trends, I
adopt an event-study design setting as reference date the previous decennial Census period
to the modification . The graphs accompanying the event-study estimation for home values,
which is the variable that can change faster to modifications, are shown in Figure 6. 10 years
before the modifications, modified neighborhoods were not doing systematically worse than
the rest of the neighborhoods within the msa.

7. Greening the legacy of redlining.

Previous findings have revealed the existence of potential interventions that can alter water
amenities and reverse the effects of redlining. These waterfront redevelopments, however, are
viable primarily in neighborhoods located proximate to water features. Given the geographic
limitations of implementing such policies, the potential for mitigating persistence remains
restricted for areas distant from water bodies. In light of this, the following section delves into
the role of an amenity with broader geographical applicability—tree canopy—in mediating
the effects of redlining.

Due to data limitations, exploring the effects of tree canopy changes on neighborhood
outcomes requires a different strategy. Modifying Equation 1 to incorporate changes in tree
coverage in the same fashion as for water and park amenities and waterfront modifications
is unfeasible given the lack of high-resolution aerial imagery (i.e., 1m2 pixels or less) before
2003. However, it is feasible to take a snapshot and estimate how outcomes in 2015 differ
for D-graded neighborhoods depending on the experimented changes in the tree canopy.
Formally, the goal is to estimate:

y2015
im =β0 + β1Ri + β2∆TC2015

i + β3(Ri × ∆TC2015
i ) + αim + ϵim (4)

33Results in Table 5 are also robust to these fixed effects (not shown).
34The only exception would be Chicago Front Trail, to which I assigned 1964 because it was the only date found.
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Figure 2: Home values and timing of waterfront modifications

Notes: the regressions in the figures controls for msa and year fixed effects, so coefficients are estimated on the
basis of all neighborhoods within msa. All regressions control for holc grades and a dummy taking value one for
areas where at least 20% of the area is covered by 500 meter buffers around water or parks. The standard errors of
the regression were clustered by Census division-year. Dependent variable is the percentage of housing units on

and above the msa median home value. The modifications dates are rounded to the nearest Census period.
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where all variables are defined as before and ∆TC2015
i represents the growth rate of detected

tree pixels between the 2000s-2015 (i.e., TC2015
i −TC2000s

i
TC2000s

i
). 35 The coefficient of interest in Equation

4 is β3. It captures how the D-C gap changes for a 100% increase in tree coverage.
However, estimating Equation 4 with ols would result in biased estimates because changes

in urban trees (i.e., ∆TC2015
i ) are potentially endogenous. Equation 4 may suffer from reverse

causality, and increases in tree canopy could be either a cause or a consequence of better
neighborhood outcomes. There is also potential for omitted variable bias, and unobserved
events and local interventions associated with changes in urban green spaces (i.e., new
constructions or sidewalks and street renewals) could be biasing the estimates. Moreover, even
though the tree detection algorithm achieves an average precision of 90%, measurement error
is unavoidable, and some pixels will be incorrectly labeled. Furthermore, there is evidence that
differences in tree canopy are related to redlining, with D-graded areas having lower levels
of vegetation cover (Locke, Hall, Grove et al., 2021; Nardone, Rudolph, Morello-Frosch, and
Casey, 2021; Namin, Xu, Zhou, and Beyer, 2020). Similarly, redlining influences the evolution
of tree coverage because D-graded areas tend to meet the criteria for priority plantation sites
(i.e., high imperviousness, urban heat islands, social and economic inequality).36 Appendix
Table 8.3.12 provides additional evidence showing that (1) D neighborhoods are the ones with
the lowest share of tree pixels, (2) together with C areas, they are the ones below total average
canopy cover and (3) despite of a general increase in tree cover for all neighborhoods, the
highest increase takes place in redlined areas.

Nonetheless, the sign of the bias generated is unclear. An upward bias would be caused if
it is gentrifying areas that demand more trees. In such a situation, the ols coefficients would
be larger than the instrumented ones. On the other hand, if trees are being disproportionately
planted in areas lagging as an intervention to improve their situation, the ols coefficients
would be downward biased. Regardless of the sign of the bias, any of the situations imply
that the ols coefficients cannot be causally interpreted.

To address these endogeneity concerns, this paper employs a two-stage least squares
approach and predicts changes in tree coverage with changes in exposure to exotic tree
plagues.37 The plagues behind the instrument were the deadliest in 2015 according to Fei,
Morin, Oswalt, and Liebhold (2019). To further ensure relevance and exogeneity, two plagues

35Due to computational constraints, changes in detected trees can only be measured between two time periods.
The first period is labeled the 2000s since the first available data year depends on the states and ranges between
2003-2007. For a detailed explanation of data construction, see Section 3.

36See the evidence provided by Hoffman, Shandas, and Pendleton (2020) on redlining, imperviousness, and
urban heat islands.

37Compared to native plagues, exotic ones represent a greater threat due to (i) the limited co-evolution between
hosts and plagues that reduces host resistance (Tubby and Webber, 2010) and (ii) the lack of native enemies that
facilitates the spread upon arrival (Aukema, Leung, Kovacs, Chivers, Britton, Englin, Frankel, Haight, Holmes,
Liebhold et al., 2011). Some examples include the Gypsy Moth, accidentally released in the 1860s, and that between
1920-2002 defoliated over 95 million acres (Coleman, Haavik, Foelker, and Liebhold, 2020). The arrival of the Dutch
Elm Disease (DED) to Ohio in the 1930s caused similar consequences killing 56% of the original northeastern elms
in the next 40 years. Other examples include the Hemlock Wolly Adelgid, the Asian Longhorned Beetle, and the
recent Emerald Ash Borer. On average, host mortality occurs within 4-10 years of infection of these plagues.
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with different mortality and management strategies are excluded.38 The first one is the Gypsy
Moth since host mortality occurs only after successive defoliation, which is unobservable
using available data, and recent management strategies have focused on mating disruption to
slow its spread. The other excluded plague is the White Pine Blister Rust, a pathogen whose
relatively long time of latent infection, along with the fact that it spreads through infected
ribes and not from tree-to-tree implied tree removals were ineffective ways of managing the
disease (Maloy, 2003). For the considered plagues, chemical treatments, when available, are
usually preventive, typically need to be repeated annually or biannually, and due to their costs
and ecological impact, are generally only recommended for high-value ornamental trees. As a
result, management strategies typically include a combination of host removals and preventive
treatments when these costs are not expected to rise in an eventual infection.39

Non-native tree plagues are exogenous shocks whose management requires the removal
of affected trees and their replacement (Aukema et al., 2011; Hudgins, Koch, Ambrose, and
Leung, 2022). Because the size, species, condition, and location of removed trees determine
replacement in an attempt to maintain their value, replacements may not be on a one-to-one
basis.40 Typically, medium-to-large basal area trees, which are the most vulnerable to removal,
must be substituted by more than one smaller tree. Hence, variation in plagues stemming
from lengthier exposure and new plagues’ arrival will trigger an exogenous change in the
canopy that can be used as an instrumental variable.

Using the data on pests and potential hosts distribution described in Section 3 involves
assuming all neighborhoods within a given county infested by plague j will also be infested
if they contain hosts for pest j and that exposure increases with the area of potential hosts.
Letting PHij be the share of plague j potential hosts basal area to detected trees in 2000 in
neighborhood i and Yt

ij the years since the detection of plague j in that area, changes in plague
exposure in neighborhood i between 2000-2015 are defined as follows:

∆PlagueExposure2015
i =

j=5

∑
j=0

PH2000
ji × ∆Y2015

ij (5)

Equation 5 captures different sources of variation in exposure: variation in the share of

38Additionally, four plagues are not detected in the data used. These plagues are the Green Spruce Aphid, the
Laurel Wilt, the Sudden-Oak Death, and the Port-Orford-cedar root disease.

39Costs increase with the tree basal area (area covered by the stems) whose evolution is closely related to the
age of the tree. Typically, young trees and old trees tend to grow slower than middle-aged. Therefore, medium-age
trees with medium-to-large basal areas are removed, while young and old trees may be preventively treated.

40An example can be seen in the New York City Department of Parks & Recreation regulations: https://www.
nycgovparks.org/rules/section-5. Other practical examples are available at the Tree Plantation guidelines of
Arlington: https://www.arlingtonva.us/Government/Programs/Building/Resources/Tree-Replacement. Re-
search suggests that tree replacement based on leaf area would range from 13.7 per large removed tree to 3.3 per
small removed tree (Nowak and Aevermann, 2019). Moreover, new plantations can employ non-host species or
genetically resistant hosts (i.e., the Pacific hemlock is immune to plagues affecting the Atlantic variant). In fact, for
endemic pests, current research is trying to develop host-resistant species rather than treatments.
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trees potentially infected (PH2000
ji ), 41 and variation in the years of exposure (Y2015

ij ). Since
particular species may be endogenously allocated to neighborhoods, considering all j plagues
combined strengthens the exogeneity of the instrument by capturing susceptibility to any
plague rather than to a specific one. Including exposure times captures that the effect on tree
replacements rises with longer exposures as more hosts are affected. Similarly, for replaced
trees, there must be some time lag before their size is large enough to be detected in imagery.
Appendix Figures 8.3.1 and 8.3.2 display the county distribution of plagues and an illustration
of the share of potential hosts of one of the plagues, the Emerald Ash Borer, in Chicago’s
neighborhoods respectively

Then, the first stage equation is defined as:

∆TC2015
i = α0 + α1Ri + α2∆PlagueExposure2015

i + α3(Ri × ∆PlagueExposure2015
i ) + αim + ui

(6)
where all variables are defined as in the text. Notice that there was only one endogenous
variable, ∆TC2015

i , in the ols equation. Ri is included since it will appear in the second stage
equation, and if ∆TCi is, in fact, related to Ri but not controlled for, the error term of Equation
6 will be correlated with Ri and will bias the estimations. Since Ri is uncorrelated with ui,
so is the interaction between Ri and ∆PlagueExposure2015

i . Adding the interaction has the
additional advantage of controlling for possible concerns regarding heterogeneity in plague
effects and management. 42 Decomposing Equation 6 into fitted values (∆̂TCi) and an error
term (νi) and plugging this decomposition in Equation 4 yields:

y2015
im =β0 + β1Ri + β2∆̂TC2015

i + β3(Ri × ∆̂TC2015
i ) + αim + ζi (7)

where ζi = β2νi + β3(Ri × νi) + ϵim. Estimating this equation would be problematic if any

of the regressors is correlated with the error ζi. However, notice that ∆̂TC2015
i would be,

by construction, orthogonal to both νi, ϵim and Ri, and hence uncorrelated with the error.
Similarly, Ri will also be uncorrelated to ui since it is included as a regressor in the first stage
and is thus orthogonal to ϵim. The only potential concern would be the correlation between Ri

and the term Ri × νi, but since Ri is orthogonal to νi and R2
i is Ri (i.e., it is a dummy variable),

there is no correlation between regressors and ζi and hence Equation 7 can be estimated
safely.43

The underlying assumption behind the use of exotic pests as instruments is that they have
an equal effect on all neighborhoods. This assumption is not unrealistic since infected, dead,
or at-risk trees, private or public, are equally likely to be removed regardless of their location
as long as they share similar ages and basal areas. Since this paper focuses on similarly old

41The normalization with pixels detected in the 2000s is done because the increases in tree canopy are also
defined relative to these pixels.

42For instance, given the evidence in Hoffman, Shandas, and Pendleton (2020) on redlining areas suffering from
urban heat islands, it could be that trees in redlined areas are subject to more stress and therefore be more likely to
die from plagues. These effects, if they exist, will be accounted for by the interaction of both variables.

43Cov(Ri, Riνi) = E(R2
i νi) = E(Riνi) = E(Ri)E(νi) = 0.
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neighborhoods, D and C-graded ones, the overall distribution of tree canopy should be akin
since they have experienced the same shocks. As a result, changes in exposure to plagues
should have comparable effects in both neighborhoods. Other potential threats could be that
mortality rates are endogenous due to the environmental stresses for trees caused by redlining
or that replacements are endogenous and D-graded areas receive lower or slower-growth
replacement trees. Importantly, these hypotheses can be checked empirically by looking at the
estimates of α1 and α3 in Equation 6.

Given the spatial correlation between species distribution and plagues for neighboring
areas, estimating Equation 6 and 7 at the border-pair level is unfeasible since there would not
be enough variation in plague exposure to predict tree canopy after adding border-pair fixed
effects.

Table 6 displays, on Panel A, the results of estimating the first stage equation (Equation 6)
and, on Panel B, the results of the second stage (Equation 7). The first stage results show that
increases in plague exposure lead to significant increases in the tree canopy. To simplify the
interpretation of ∆ Plague Exposure2015

i , a standard deviation increase in plague exposure leads
to 237 pp higher increases in tree coverage. Column (2) of Panel A also controls for natural
amenities, their modifications, and the interactions with redlining since these features could
correlate with the observed changes in the tree canopy. The results remain unchanged even
after adding these additional controls. Moreover, results in column (1) do not show significant
heterogeneity in the effect of plague exposure for D and C neighborhoods, reinforcing the
exogeneity of the instrument.

Comparing the second stage results in Panel B with the ols results in Table 7 shows that
the ols estimates are downward biased. Moreover, while there are no significant effects for the
interaction between D-graded and changes in tree coverage with ols, the interaction becomes
significant and positive for the white population and family income using the two-stage least
squares strategy. Doubling tree canopy reduces the demographic and income gaps by 40%
(i.e., 1 − (β1 + β3)/β1 in Equation 7). The lack of a significant effect on home values at the
neighborhood level is consistent with the literature on the hedonic analysis of trees. Because
the impact of trees on property prices decays with distance, observing only medians of values
at the neighborhood level can offset the effect.

The difference between iv and ols estimates is consistent with Baum-Snow (2007) and
Duranton and Turner (2012), suggesting that the increases in tree coverage result from
policy interventions in areas that have not converged to achieve the catching-up. The
existence of tree plantation and regreening initiatives in low-income areas further sustains this
hypothesis. For instance, Groundwork USA, a network of approximately 20 local trusts, was
founded in 1998 from a partnership between the National Park Service and the Environmental
Protection Agency and is devoted to improving the environmental conditions of low-resource
communities and reverting the legacy of poverty and discrimination through multiple greening
initiatives. Similarly, the Environmental Tree Service in Portland has provided free street trees
to low-income and under-served communities since 2008. Moreover, with the publication of the
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Table 6: Greening redlining

Panel A: First stage
(1) (2)

Dependent ∆ Tree canopy ∆ Tree canopy
variables
D-graded 0.844 0.635∗

(0.6590) (0.3317)

∆ Plague Exposure 213.760∗∗∗ 214.204∗∗∗
(50.0954) (50.3676)

D-graded × ∆ Plague Exposure -155.699 -149.762
(155.3191) (151.8108)

∆ 1 SD ∆ Plague Exposure 2.37 2.38
F-stat (instrument) 18 18
F-stat (instrument & interaction) 9 9
Area FE msa msa

Amenities and modifications YES
Mean Dep. Var. 2.02 2.02
Observations 1452.00 1452.00
Adjusted R2 0.15 0.15
Adjusted within R2 0.07 0.07

Panel B: Second stage
(1) (2) (3)

Dependent % housing units above % families above msa

variables % white msa median home value median family income

D-graded -84.321∗∗∗ -22.808 -45.730∗∗
(29.3970) (18.9841) (18.9578)

∆̂TC 0.456 0.082 0.006
(0.5356) (0.2444) (0.1518)

D-graded × ∆̂TC 33.976∗∗∗ 8.672 17.357∗∗
(12.8753) (8.3026) (8.2927)

Area FE msa msa msa

Mean Dep. Var. 43.43 38.42 35.68
Observations 1,450 1,450 1,450

Notes: Panel A shows the results of the first stage equation, which regresses the experimented tree canopy increase
on a dummy for being D-graded, the change in plague exposure and the interaction between both. Both columns
include msa fixed effects. Column (2) controls also for the presence of amenities modifications and the interactions
with D-graded. The increase in tree canopy is computed as the growth of tree pixels between the two periods.
Panel B shows the results from regressing the dependent variables in 2015 on the entire D-C sample on a dummy
for being D-graded, the fitted values of the regression from Panel A and the interaction. All columns include msa

fixed effects. msa without plagues are excluded. Standard errors are robust and ***, **, * indicate significance at the
1, 5, and 10 percent.
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Table 7: OLS results

(1) (2) (3)
Dependent White % housing units above % families above msa

variables share msa median home value median family income

D-graded -5.090∗∗∗ -2.439∗ -6.428∗∗∗
(1.7973) (1.3599) (1.0497)

∆ Tree Canopy 0.845∗ 0.612∗∗ -0.012
(0.4436) (0.3052) (0.1329)

D-graded × ∆ Tree Canopy -0.680 -0.353 0.195
(0.4386) (0.3086) (0.1477)

Area FE msa msa msa

Mean Dep. Var. 43.43 35.68 35.68
Observations 1,448 1,448 1,448
Adjusted R2 0.07 0.39 0.18
Adjusted within R2 0.02 0.02 0.03

Notes: this table shows the results from regressing the dependent variables in 2015 on D-graded, the experimented
increase in tree canopy and their interaction on the msa D-C sample. Changes in tree canopy are defined as the
increase in pixels detected as trees in between 2015 and 2000s. All specifications include msa fixed-effects. msa

without plagues are excluded. Standard errors are robust and ***, **, * indicate significance at the 1, 5, and 10

percent.

HOLC maps, initiatives also started to focus explicitly on formerly redlined neighborhoods. For
instance, the Southside ReLeaf association has been committed to reverting the environmental
legacy of redlining in South Richmond since 2019.

Robustness

Given the high difference between ols and iv estimates, I also estimate the reduced form
of Equation 4 introducing changes in plague exposure directly. Results shown in Table 8

corroborate the previous finding: D-graded areas that experiment with higher exposure to
plagues have higher shares of white population and family income. As in Table 6 there are no
significant effects on housing values. Appendix Table 8.3.31 shows that these results remain
unchanged even after controlling for natural amenities, modifications, and their interaction
with redlining. Moreover, estimating the second stage controlling for natural amenities,
modifications, and the interaction with redlining and using the fitted first-stage values of
Column (2) in Panel A Table 6 does not lead to significant differences in the estimates, as
shown in Appendix Table 8.3.32.
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Table 8: Reduced form results

(1) (2) (3)
Dependent White % housing units % families above
variables share above msa median msa median

home value family income
D-graded -7.667∗∗∗ -3.272∗∗ -6.763∗∗∗

(1.6963) (1.3235) (1.0856)

∆ Plague Exposure 97.479 17.510 1.265
(114.4816) (52.2514) (32.4534)

D-graded × ∆ Plague Exposure 1901.689∗∗ 490.767 1006.811∗∗
(754.6791) (484.2337) (482.3129)

∆ 1 SD ∆ Plague Exposure 21.11 5.45 11.18
Mean Dep. Var. 43.43 38.42 35.68
Observations 1,450 1,450 1,450
Adjusted R2 0.06 0.39 0.18
Adjusted within R2 0.02 0.00 0.03

Notes: This table shows the results from regressing the dependent variables in 2015 for the entire D-C sample on
a dummy for being D-graded, the experimented change in plague exposure and their interaction. All columns
include msa fixed effects. Changes in tree canopy are defined as the increase in tree detected pixels during the two
periods with aerial imagery. msa without plagues are excluded. Standard errors are robust and ***, **, * indicate
significance at the 1, 5, and 10 percent.

8. Concluding comments

In response to the mortgage and housing crisis that followed the Great Depression, the New
Deal administration undertook a series of reforms that had long-lasting consequences on these
sectors. Among them are the creation of the Home Owner’s Loan Corporation (holc) and the
implementation of the City Survey Program. Under this plan, the holc graded neighborhoods
in us cities with a population greater than 40,000 inhabitants to assess the risk of insuring
mortgages supposed for the Federal Government in each neighborhood. The purpose was
to design a system that would allow to guarantee and control of the value of the housing
assets held by the government through mortgage insurance and refinancing. Neighborhoods
could be assigned different grades (A-B-C-D) depending on the area transportation access,
proximity to amenities, housing, and economic, demographic, and racial characteristics. The
grades were then represented with different colors (green-blue-yellow-red, respectively) in the
Residential Security Maps, commonly known as redlining maps. The appraisal criteria reflected
the institutionalized racism of the period, leading to minority, black, and poor neighborhoods
receiving the worst grade (D-graded). D-graded neighborhoods were deemed risky and hence
deprived of federal housing credit until 1977, with the passing of the Community Reinvestment
Act. The practice of systematically denying credit based on neighborhood characteristics
is commonly known as redlining. The recent digitization of these maps (Nelson, Winling,
Marciano, Connolly et al., 2017)opened the path for the study on the long-term consequences
of these discriminatory lending practices that show redlining has had persistent effects (Appel
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and Nickerson, 2016; Krimmel, 2018; Aaronson, Hartley, and Mazumder, 2021).
Utilizing the digitized redlining maps, Census data, and the location of water and

park amenities for the 1940-2015 period, this paper identifies the relationship between the
persistence of spatial inequalities and proximity to water and parks, leveraging the inequalities
generated by redlining. Introducing waterfront revitalization projects departs from the
traditional literature that considers geography as static by showing that water amenities
also have a component that changes and can be molded through human intervention. In
this way, this paper not only contributes to the above-quoted literature on the persistence
of redlining but also to the literature that focuses on natural amenities as determinants of
neighborhood outcomes (Rappaport and Sachs, 2003; Rappaport, 2007; Villarreal, 2014; Lee
and Lin, 2018; Heblich, Trew, and Zylberberg, 2021). Given the limited geographic span
of waterfront beautification projects, this paper also explores how changes in urban green
coverage can mediate the effects of redlining. This paper also contributes to the literature on
the effects of urban tree coverage with the development of new neighborhood panel data on
tree canopy and a new instrumentation strategy to tackle the endogeneity behind changes in
the tree canopy.

The empirical strategy overcomes the non-random grading by implementing a diff-in-diff
comparing neighborhoods with the most severe credit restriction (D-graded, redlined) to
nearby areas with the second worst grade (C-graded, yellowlined). Focusing on nearby
D-C pairs leverages the new procedure to match redlining maps with Census data here
developed, the Census-to-Redlining Constant Crosswalks. By assigning Census units to graded
neighborhoods, the crosswalks preserve the original sharp variation in grade assignment while
allowing unobservables to change gradually at the border. Results show that significant gaps
between D-C areas have persisted decades after outlawing redlining, but the persistence is
heterogeneous and diminishes in D-graded neighborhoods by water and parks. It is, however,
only the water amenities that have been made accessible and improved to neighborhoods
through waterfront revitalizations that drive the effects. Finally, the results also show that
exogenous increases in tree coverage can completely close the D-C gaps in population and
income.

But what is beyond the faster convergence due to waterfront renovations and increases
in tree coverage? Contrasting stories with different implications could drive the results. On
the one hand, if the original redlined communities are owners, they could capitalize on the
increases in higher home values. In this way, residents’ welfare would improve, not only
because of the generated water and green amenities but also because higher home values
would lead to higher tax revenue for local services. Therefore, waterfront beautification and re-
greening strategies could effectively reverse the consequences of redlining for neighborhoods
and individuals. On the other hand, it could be that the original residents who remained
renters get displaced. Neighborhoods with improved waterfronts or greened areas may be
experimenting with large influxes of white people. Increased demand for these neighborhoods
would raise housing prices and rents. Eventually, the process would displace the original
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residents to areas with similar pre-convergence characteristics, or even worse if displacement
is towards areas without water and park amenities, whether improved or not. As a result,
despite successfully allowing D-graded neighborhoods to converge, the originally redlined
communities would be worse off.

To approximate this question, the last four tables of the Appendix 8.3 re-estimate the
equations for waterfront modifications and tree canopy but with dependent variables in-
tersecting race, ownership, education, and income. Only D-graded neighborhoods with
modified water amenities have experienced a significant decrease in the percentage of black
owners and renters and an increase in the percentage of white owners and renters. Improved
D-graded neighborhoods also have a higher proportion of white population with some college
attendance. Interpreting the results of the Section on waterfront improvements in light of these
two new findings suggests that the lower persistence was, in part, reflecting the gentrification
of these neighborhoods.

Re-greening neighborhoods provoke similar results, decreasing the share of black owners
and renters and increasing the white shares. In quantitative terms, a 100% exogenous growth
proves sufficient to reduce by 40% the ownership and renting differences. However, the
increases in tree coverage also result in higher high-income Black residents while they have no
effects on the college education of residents.

This paper demonstrated that not all D-graded neighborhoods have remained degraded.
Areas near water and park amenities can converge much faster. The heterogeneity documented
here implies that redlining is not affecting all previously D-graded areas equally. As a result,
policy interventions should focus on the ones that have remained degraded. Although this
paper shows that waterfront and re-greening initiatives are very effective in revitalizing
neighborhoods, it also highlights that these interventions are not necessarily associated with
improvements for the original redlined communities.
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Appendix

8.1 Census-to-Redlining Constant Crosswalks

Figure 8.1.1: Redlining maps and 1940 tracts

1940 Census Tracts

HOLC Polygons Grads
A

B

C

D

LakesAndPonds_f

Parks

Notes: This figure shows the intersection between HOLC graded neighborhoods from the redlining maps and the
1940 Census tracts. Source: See data description. Own elaboration.

As shown in Figure 8.1.1, Census units do not align perfectly with the original neighbor-
hoods of the redlining maps. As a result, one needs to develop a matching method to merge
redlining and Census information. As discussed in the main text, assigning grades to Census
units generates a series of problems that undermine the validity of the results obtained with
that procedure. 44 As a result, I follow the opposite strategy and assign Census units to graded
neighborhoods by using the Census-to-Redlining Constant Crosswalks, which I describe in
detail in this Appendix.

The basic idea behind the crosswalks is to compute the share of the Census units that fall
in the original graded neighborhood. Then, one can use these weights to construct data at
the originally graded neighborhood. As shown in Figure 8.1.2, the black line represents the
graded neighborhood (holc polygon), and the blue line the two tracts that intersect it. For
one of them, 78% of its area is contained in the neighborhood. For the other, 98% of it falls in

44This procedure eliminates the measurement error on the grade assignment but the concern of measurement
error induced on the neighborhood Census variables by the areal weights would still be present. However, when
performing regressions this measurement error will not bias the results as long as it is uncorrelated with the error
term.
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Figure 8.1.2: Census-to-Redlining Constant Crosswalks

HOLC Polygon

1940 Tracts

Area Covered by 1940  Tracts

Lakes

Parks

Notes: This figure is an example of the areal weights used in the Census-to-Redlining Constant Crosswalks.
Source: see data description. Own elaboration.

the neighborhood. As a result, data at the graded neighborhood level will be the weighted
sum of the data for these two tracts, with these areal weights.

Constructing the weights for 1940 is straightforward and is simply done by intersecting 1940

tracts with the originally graded neighborhoods. Then, I compute the area of the intersection.
The result will be a file that contains each graded neighborhood, its area, the tracts that
intersect them and their area, and the area of the intersection. From this, I first compute the
share of the holc neighborhood that is covered by 1940 tracts and keep only the ones that
are covered by at least 80%. Then, I simply compute the share of the tract that falls in the
neighborhood. For the rest of the years, the process is essentially the same but it becomes more
cumbersome since I need to restrict the area to the one covered in 1940. I will use 1950 tracts
for the explanation for simplicity but this is the procedure applied to any other decade besides
1940. To do this, I performed the same intersection between 1950 tracts and the holc-graded
neighborhoods. Then, I re-intersect this with the 1940-holc intersection. Computing the areas
of these re-intersections tells the area of the 1950 tract that was covered already in 1940. Then
I simply compute the share of the 1950 tract that falls in this re-intersection area. Since a 1950

tract does not necessarily intersect with only one 1940 tract, I then sum the different weights
of the 1950 tract that falls in the same graded neighborhood (i.e., I am just adding the area
share of the 1950 tract that corresponds to a 1940 tract and the area share of this same tract
that corresponds to other 1940 tract that fall in the same graded neighborhood).

42



The result from applying this procedure every decade is a set of files that have four columns:
the holc neighborhood (index), the assigned holc grade (A-B-C-D), the identifier for the
tract/block group that falls in it (GISJOIN), and the area share of the tract/block group that
corresponds to that Census unit-holc neighborhood intersection. Then, to construct data
at the neighborhood level, one only needs to download data from the National Register of
Historical Places at the tract level (1940-1980) and block group level (1990-2015). The use of
the crosswalks is essentially the same as the use of Lee and Lin (2018)’s ones. Some examples
below illustrate how the variables in this paper have been constructed.

1. Merge the Census data with the Census-to-Redlining Constant Crosswalks

import delimited "$data\NHGIS_1940.csv", rowrange(1:) varnames(1) clear
rename gisjoin gisjoin1940
merge 1:m gisjoin1940 using "$cw\HOLCto1940.dta" /*Crosswalk file*/
keep if _merge == 3
drop _merge

2. For variables expressed as counts, simply weight them with the areal weight ch1940
(share of the 1940 tract that falls in the HOLC graded neighborhood)

local varlist "white population"
foreach var of local varlist{
gen wt‘var’ = ‘var’*ch1940
}

3. For variables expressed as counts, add the weighted observations of the previous step at
the HOLC neighborhood level

local varlist "white population"
foreach var of local varlist{
bysort index: egen ‘var’1940 = total(wt‘var’), missing
}

4. Generate the variable of interest, drop duplicates and save

gen WhiteShare1940 = white1940/population1940
keep index WhiteShare1940 population1940
egen tag = tag(index)
keep if tag
save "$data\population1940.dta", replace

5. For home values and income, after obtaining the msa medians, apply the crosswalks
to the number of housing units or families in each interval, attach the midpoint of the
interval or the value if it is the first or last reported interval and compute the share on
and above the MSA median for each graded neighborhood.

6. For variables reported as means, apply the crosswalks to the relevant count variable,
attach the value, and obtain the mean in the polygon. For instance, for average family
income obtain the cross-walked number of families, multiply it by the reported income,
and average it for each neighborhood.
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8.2 Waterfront modifications data sources

This appendix describes the waterfront modifications that were considered together with their
data source. Details on reasons why some cities are not considered here as well as additional
information can be made available upon request. These modifications have been merged into
a single file that is also available upon request. 45

Baltimore: Data for waterfront improvements comes directly from the digitized Urban
Renewal Plans of the Baltimore Department of Planning. The date for the Canton Waterfront
comes from the same plan, which was approved in 1984. By establishing the date to be 1990,
the modification taking into account the date will only appear from 2000 onward, giving a long
enough time window for it to have taken place. For Inner Harbor, the project was approved in
1967, the date chosen is because in 1976 a series of celebrations of the US Bicentennial took
place there, suggesting the project had already been, at least partially, completed.

Boston: Boston Waterfront modifications include the creation of the Cristopher Columbus
Waterfront Park and the Harborwalk. The location of the first one comes from selecting
that park from the Open Space shapefile provided by the City of Boston Open data portal.
The area is meant to capture the waterfront and the redevelopment of the Faneuil Hall area.
The Harborwalk is obtained by extracting it from the shapefile containing shared walker
trails from the following dataset. Dates are based on the New York’s Time Article "BOSTON
WATERFRONT: AT 25, A MODEL URBAN RENEWAL" (1986) available here.

Bronx: All data comes from the New York City Departments of Parks and & Recreation.
The parks are extracted from the Open Space Recreation Parks shapefile provided by the City
of New York. The Bronx River Greenway is obtained by merging the Bronx Park and the
Shoelace since no park with such a name appeared on the shapefile.

Brooklyn: Data for the Brooklyn Bridge Park is obtained in the same way as the data for the
Bronx. Only the completed parts of the Brooklyn Waterfront Greenway are considered. They
are obtained by extracting the objects designed as greenways from the New York Biking Routes
shapefile and comparing them to the ones provided by the Brooklyn Greenway Initiative (BGI).
The attached date is based on the information given by the BGI.

Buffalo: Although the waterfront redevelopment of Buffalo is not considered in the analysis
because the buffer around it does not intersect any graded neighborhood, the modification
considered is the redevelopment of Canalside. It was geolocated with the coordinates of
Canalside on Google Maps. The attached date was 2008 when the Central Wharf was
inaugurated. More information can be found here.

Cambridge: The modifications considered come from the Cambridge Community De-
velopment Department. It considers the 1978 East Cambridge Riverfront Plan and the 1983

Cambridgeport Revitalization Plan. It was geolocated by extracting the districts of East
Waterfront and Cambridgeport.

Chicago: Modifications considered include the Riverwalk and the Lake Front Trail. The
information on the Riverwalk was obtained from the Chicago River Timeline from the Chicago
River Edge Ideas Lab which depends on the City of Chicago’s Department of Planning and

45For some areas, it was unclear whether a modification had taken place or not and there were incongruities
among data sources. As a result, I only considered the modifications that according to the majority of data sources
had been fully implemented and, in case of doubt, by inspecting the area in Google Street View and comparing it
to the rest of the areas before deciding.
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Development. It was geolocated with the Open Spaces-Riverwalk shapefile of the Chicago
Data Portal. The date was chosen because it was when the construction between Lake Shore
Drive and Michigan Avenue started. Data on the Lake Front Trail is extracted similarly from
the Bike Routes of the Chicago Data Portal. It was designated as a bike trail in 1963.

Columbus: The considered modifications were extracted because of their appearance in
the case study "The transformation of the downtown Columbus riverfront 1998-2020" by the
City of Columbus and MKSK studios, which can be accessed here. The created parks (Genoa
Park, Lower Scioto Park, and North Bank Park) were extracted from the City of Columbus
Open Data Park Property Boundaries shapefile.

Duluth: only considers the Canal Park. It was chosen because of the Duluth New Tribune
2010 Article "History: Changing Duluth’s waterfront from junk to jewel of the North", accessible
here. It was geolocated by extracting all addressed structures in Canal Park from the Address
Point shapefile of the St. Luois County (MN) data portal.

Indianapolis: information on Canal Walk was obtained from the Cultural Landscape
Foundation. It was geolocated by extracting the objects named Canal Walk from the
Indianapolis Parks shapefile provided by the City of Indianapolis data portal.

Louisville: Information for the Waterfront Park was obtained from its web page. It was
located by extracting the areas named Waterfront Park from the Louisville Metro Areas of
Interest shapefile of the Louisville Open Geospatial Data portal.

Lower Westchester County: The only modification is a part of the Bronx River Parkway
that intersects one neighborhood there. See the description for the Bronx.

Manhattan: Considered parks were extracted following the New York City Comprehensive
Waterfront Plan (1992) and the Vision 2020: New York City Comprehensive Waterfront Park
(2011). They are all extracted from the Open Space shapefile of the NYC data portal.

Minneapolis: Nicollet Island was deemed as a modification following this newspaper
article. Even if other areas could have been relevant (i.e., Hennepin Island, Promenade Main
Street, West Bank Waterfront, Basett’s Creek) I was only able to locate Nicollet Island by
extracting the parks with such names from Minneapolis Open Data. Moreover, with Google
Street View these areas, as well as the riverbank, did not seem to have been developed
comparably to other areas in other cities.

New Orleans: Although it does not intersect any neighborhood, the modifications
considered were the ones that took place around the French Quarters (Moonwalk and
Woldbenger Park). They were located by extracting them from the Parks data of New
Orleans.

Philadelphia: Penn’s Landing was considered because of the mentions in Visit Philly
tourism web page. It was located by extracting the parks that would correspond to its location
according to Google Maps, which would include the Irish Memorial, the Korean War Veteran’s
Memorial, and the Vietnam Memorial. The date was chosen since it was the inauguration of
Penn’s Landing Great Plaza.

Pittsburgh: The parks located are the ones that belong to the Three Rivers Parks
(Monongahela, Allegheny, and Ohio) following the Pittsburgh Waterfront Master Plan. The
dates and specific parks were extracted from the Pittsburgh nonprofit organization Riverlife.
Besides the ones in Appendix Table 8.3.3, the Point State Park and the Northshore Riverfront
Park were also considered.
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Portland: Following Portland’s Park and Recreation Department, the only two considered
features were the South Waterfront Park, which includes the Gov. Tom McCall Waterfront
Park, and the Vera Katz Eastbank Esplanade. They were located by extracting these features
from park shapefiles.

Seattle: The modifications considered to capture the Seattle waterfront redevelopment
were the location of the Aquarium and the Waterfront Park.

Queens: The sole modification is a part of the Brooklyn Bridge Park that intersects
neighborhoods in Queens. See Brooklyn.
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8.3 Additional evidence and results

Figure 8.3.1: County distribution of pests

Notes: this map shows the total number of selected deadly plagues from (Fei, Morin, Oswalt, and Liebhold, 2019)
in that county as of 2019. Source: Fei, Morin, Oswalt, and Liebhold (2019). Own elaboration.
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Figure 8.3.2: Potential Emerald Ash Borer Hosts in Chicago (per thousand tree pixels)

Notes: this map shows the potential Emerald Ash Borer hosts per thousand tree pixels in Chicago holc

neighborhoods. Source: Wilson, Lister, Riemann, and Griffith (2013) and see data description. Own elaboration.
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Table 8.3.1: holc cities and 2010 msa assignment

MSA 2010 HOLC City Neighborhoods %

Birmingham-Hoover, AL Birmingham 310 0.8%
Los Angeles-Long Beach-Santa Ana, CA Los Angeles 4,420 11.7%
San Francisco-Oakland-Fremont, CA Oakland 1,420 3.8%
San Francisco-Oakland-Fremont, CA San Francisco 1,050 2.8%
Denver-Aurora-Broomfield, CO Denver 530 1.4%
New Haven-Milford, CT New Haven 260 0.7%
Atlanta-Sandy Springs-Marietta, GA Atlanta 1,210 3.2%
Augusta-Richmond County, GA-SC Augusta 260 0.7%
Macon, GA Macon 410 1.1%
Chicago-Joliet-Naperville, IL-IN-WI Chicago 3,360 8.9%
St. Louis, MO-IL East St. Louis 360 1.0%
Indianapolis-Carmel, IN Indianapolis 880 2.3%
Louisville/Jefferson County, KY-IN Louisville 510 1.3%
New Orleans-Metairie-Kenner, LA New Orleans 1,190 3.1%
Boston-Cambridge-Quincy, MA-NH Boston 390 1.0%
Boston-Cambridge-Quincy, MA-NH Cambridge 150 0.4%
Boston-Cambridge-Quincy, MA-NH Somerville 10 0.0%
Baltimore-Towson, MD Baltimore 450 1.2%
Detroit-Warren-Livonia, MI Detroit 2,330 6.2%
Flint, MI Flint 530 1.4%
Duluth, MN-WI Duluth 340 0.9%
Minneapolis-St. Paul-Bloomington, MN-WI Minneapolis 860 2.3%
Kansas City, MO-KS Greater Kansas City 520 1.4%
St. Louis, MO-IL St. Louis 1,370 3.6%
Atlantic City-Hammonton, NJ Atlantic City 70 0.2%
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD Camden 200 0.5%
Trenton-Ewing, NJ Trenton 80 0.2%
New York-Northern New Jersey-Long Island, NY-NJ-PA Bronx 450 1.2%
New York-Northern New Jersey-Long Island, NY-NJ-PA Brooklyn 670 1.8%
Buffalo-Niagara Falls, NY Buffalo 380 1.0%
New York-Northern New Jersey-Long Island, NY-NJ-PA Lower Westchester Co. 480 1.3%
New York-Northern New Jersey-Long Island, NY-NJ-PA Manhattan 530 1.4%
New York-Northern New Jersey-Long Island, NY-NJ-PA Queens 1,770 4.7%
Rochester, NY Rochester 320 0.8%
New York-Northern New Jersey-Long Island, NY-NJ-PA Staten Island 730 1.9%
Syracuse, NY Syracuse 420 1.1%
Akron, OH Akron 550 1.5%
Cleveland-Elyria-Mentor, OH Cleveland 1,960 5.2%
Columbus, OH Columbus 600 1.6%
Dayton, OH Dayton 440 1.2%
Toledo, OH Toledo 390 1.0%
Portland-Vancouver-Hillsboro, OR-WA Portland 1,010 2.7%
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD Philadelphia 740 2.0%
Pittsburgh, PA Pittsburgh 1,100 2.9%
Nashville-Davidson–Murfreesboro–Franklin, TN Nashville 10 0.0%
Dallas-Fort Worth-Arlington, TX Dallas 260 0.7%
Richmond, VA Richmond 430 1.1%
Seattle-Tacoma-Bellevue, WA Seattle 600 1.6%
Milwaukee-Waukesha-West Allis, WI Milwaukee Co. 480 1.3%

Notes: this table displays the msa-holc city assignment, together with the amount of neighborhoods in each city
for the entire 1940-2015 period. Source: see data description. Own elaboration.
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Table 8.3.2: Distribution of neighborhoods per grade

HOLC City A-graded
(Green)

B-graded (Blue) C-graded
(Yellow)

D-graded (Red) Total

Akron 90 170 180 110 550

Atlanta 100 300 450 360 1,210

Atlantic City 0 10 50 10 70

Augusta 0 60 70 130 260

Baltimore 50 140 150 110 450

Birmingham 0 90 150 70 310

Boston 10 80 180 120 390

Bronx 20 120 230 80 450

Brooklyn 10 170 250 240 670

Buffalo 50 120 120 90 380

Cambridge 10 70 50 20 150

Camden 10 30 80 80 200

Chicago 70 560 1,760 970 3,360

Cleveland 350 550 780 280 1,960

Columbus 50 220 230 100 600

Dallas 60 90 60 50 260

Dayton 40 80 130 190 440

Denver 60 130 190 150 530

Detroit 150 390 1,180 610 2,330

Duluth 40 70 130 100 340

East St. Louis 40 50 120 150 360

Flint 20 70 180 260 530

Greater Kansas City 30 110 190 190 520

Indianapolis 50 190 280 360 880

Los Angeles 600 1,220 1,800 800 4,420

Louisville 80 150 160 120 510

Lower Westchester Co. 80 70 210 120 480

Macon 20 60 160 170 410

Manhattan 80 120 60 270 530

Milwaukee Co. 30 110 210 130 480

Minneapolis 180 280 230 170 860

Nashville 0 0 10 0 10

New Haven 20 40 120 80 260

New Orleans 80 180 440 490 1,190

Oakland 120 460 570 270 1,420

Philadelphia 70 240 180 250 740

Pittsburgh 110 270 410 310 1,100

Portland 110 320 450 130 1,010

Queens 10 180 1,130 450 1,770

Richmond 20 90 90 230 430

Rochester 20 70 160 70 320

San Francisco 130 370 360 190 1,050

Seattle 130 180 180 110 600

Somerville 0 0 10 0 10

St. Louis 320 440 450 160 1,370

Staten Island 40 140 270 280 730

Syracuse 50 120 160 90 420

Toledo 70 120 130 70 390

Trenton 10 10 20 40 80

Total 3,690 9,110 15,160 9,830 37,790

Notes: this table shows the distribution of neighborhoods by grade-city. Source: see data description. Own
elaboration.
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Table 8.3.3: Geolocated waterfront modifications

HOLC City Name geolocated modification Date

Baltimore Key Highway 2011
Baltimore Middle Branch 1983
Baltimore Canton Waterfront 1990
Baltimore Inner Harbor East 1976
Baltimore Fells Point Waterfront 2006
Baltimore Inner Harbor Project I 1976
Boston Harborwalk 1984
Boston Christopher Columbus Park 1976
Bronx Starlight Park 2013
Bronx Concrete Plant Park 2009
Bronx Soundview Park 1998
Bronx Bronx River Parkway 2000
Bronx Bronx Park 2000
Bronx Hunts Point Riverside Park 2007
Brooklyn Brooklyn Greenway 2010
Brooklyn Brooklyn Bridge Park 2010
Brooklyn Greenpoint-Williamsburg Waterfront 2005
Buffalo Canalside 2008
Cambridge East Cambridge 1978
Cambridge Cambridgeport 1983
Chicago Riverwalk 2001
Chicago Lakefront Trail 1963
Columbus North Bank Park 2005
Columbus Genoa Park 1999
Columbus Lower Scioto Park 2009
Duluth Canal Park 1993
Indianapolis Canal Walk 2001
Louisville Waterfront Park 1999
Manhattan Greenway 1999
Manhattan Riverside Park 2001
Minneapolis Nicolette Island 1983
New Orleans Woldenberg Park 1984
Philadelphia Penn‘s Landing 1986
Pittsburgh Point State Park 2000
Pittsburgh Southside Riverfront Park 2012
Pittsburgh Washington’s Landing Park 1980
Pittsburgh Northshore Riverfront Park 2001
Pittsburgh Monongahela Wharf Landing Park 2009
Pittsburgh Allegheny Riverfront Park 2000
Pittsburgh Allegheny Landing Park 2000
Portland Vera Katz Eastbank Esplanade 2000
Portland Gov Tom McCall Waterfront Park 1978
Portland South Waterfront Park 2000
Seattle Seattle Aquarium 1977
Seattle Waterfront Park 1977

Notes: This table shows the geolocated modifications, their date and the corresponding holc city. Source: see data
description and Appendix 8.2. Own elaboration.
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Table 8.3.4: holc cities and naip imagery

2010 MSA/CBSA HOLC City First NAIP Second NAIP
image year image year

Akron, OH Akron 2004 2015
Atlanta-Sandy Springs-Marietta, GA Atlanta 2007 2015

Baltimore-Towson, MD Baltimore 2005 2015
Birmingham-Hoover, AL Birmingham 2006 2015

Boston-Cambridge-Quincy, MA-NH Boston 2003 2014
Boston-Cambridge-Quincy, MA-NH Cambridge 2003 2014
Boston-Cambridge-Quincy, MA-NH Somerville 2003 2014

Buffalo-Niagara Falls, NY Buffalo 2006 2015
Chicago-Joliet-Naperville, IL-IN-WI Chicago 2007 2015

Cleveland-Elyria-Mentor, OH Cleveland 2004 2015
Columbus, OH Columbus 2004 2015

Dayton, OH Dayton 2004 2015
Detroit-Warren-Livonia, MI Detroit 2005 2014

Flint, MI Flint 2005 2014
Kansas City, MO-KS Greater Kansas City 2007 2015

Los Angeles-Long Beach-Santa Ana, CA Los Angeles 2005 2014
Milwaukee-Waukesha-West Allis, WI Milwaukee Co. 2005 2015

Nashville-Davidson–Murfreesboro–Franklin, TN Nashville 2006 2014
New Haven-Milford, CT New Haven 2006 2014

New Orleans-Metairie-Kenner, LA New Orleans 2007 2015
New York-Northern New Jersey-Long Island, NY-NJ-PA Bronx 2006 2015
New York-Northern New Jersey-Long Island, NY-NJ-PA Brooklyn 2006 2015
New York-Northern New Jersey-Long Island, NY-NJ-PA Lower Westchester Co. 2006 2015
New York-Northern New Jersey-Long Island, NY-NJ-PA Manhattan 2006 2015
New York-Northern New Jersey-Long Island, NY-NJ-PA Queens 2006 2015
New York-Northern New Jersey-Long Island, NY-NJ-PA Staten Island 2006 2015

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD Camden 2006 2015
Richmond, VA Richmond 2003 2015
Rochester, NY Rochester 2006 2015

San Francisco-Oakland-Fremont, CA Oakland 2005 2014
San Francisco-Oakland-Fremont, CA San Francisco 2005 2014

Seattle-Tacoma-Bellevue, WA Seattle 2006 2015
St. Louis, MO-IL East St. Louis 2007 2015
St. Louis, MO-IL St.Louis 2007 2015

Syracuse, NY Syracuse 2006 2015
Toledo, OH Toledo 2004 2015

Trenton-Ewing, NJ Trenton 2006 2015

Notes: this table shows the cities with available naip imagery and the two years years considered to predict tree
canopy. Source: see data description and Appendix. Own elaboration. par

Table 8.3.5: Distribution of population in 1940 by holc grade

% population % white % black

A-graded (Green) 3% 3% 1%
B-graded (Blue) 16% 18% 2%
C-graded (Yellow) 41% 44% 10%
D-graded (Red) 40% 35% 87%

Notes: this table shows the distribution of population in 1940 per grade, for a given decade, for neighborhoods
with Census data. Source: see data description. Own elaboration.
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Table 8.3.6: Distribution water & park amenities by holc grade

No water & parks amenities Water & park amenities Total

A-graded (Green) 132 237 369

B-graded (Blue) 339 572 911

C-graded (Yellow) 604 912 1,516

D-graded (Red) 365 618 983

Total 1,440 2,339 3,779

Notes:this table shows the distribution of water and park amenities, for a given decade, for neighborhoods with
Census data. Source: see data description. Own elaboration.

Table 8.3.7: Distribution waterfront modifications by holc grade

No waterfront Waterfront Total water & park amenities
modifications modification

A-graded (Green) 82 5 237

B-graded (Blue) 141 23 572

C-graded (Yellow) 215 25 912

D-graded (Red) 188 36 618

Total 626 89 2,339

Notes: this table shows the distribution of waterfront modifications, for a given decade, for neighborhoods with
Census data. Source: see data description. Own elaboration

Table 8.3.8: Descriptive statistics, 1940

% white % housing units above msa median home value

A-graded (Green)
Mean 98% 89%
Std. Dev. 5 12

B-graded (Blue)
Mean 98% 79%
Std. Dev. 05 16

C-graded (Yellow)
Mean 97% 63%
Std. Dev. 8 20

D-graded (Red)
Mean 86% 43%
Std. Dev. 22 21

Total
Mean 94% 64%
Std. Dev. 14 24

Notes: this table shows the descriptive statistics of the relevant variables for 1940. Source: see data description.
Own elaboration.
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Table 8.3.9: Descriptive statistics, 1950

% white
% housing units above

msa median home value
% families above

msa median family income

A-graded (Green)
Mean 98% 91% 70%
Std. Dev. 3 13 10

B-graded (Blue)
Mean 98% 81% 68%
Std. Dev. 5 17 11

C-graded (Yellow)
Mean 96% 64% 63%
Std. Dev. 9 23 12

D-graded (Red)
Mean 82% 41% 51%
Std. Dev. 26 25 15

Total
Mean 93% 0.65% 0.62%
Std. Dev. 16 27 14

Notes: this table shows the descriptive statistics of the relevant variables for 1950. Source: see data description.
Own elaboration.

Table 8.3.10: Descriptive statistics, 2015

% white
% housing units above

msa median home value
% families above

msa median family income

A-graded (Green)
Mean 72% 75% 72%
Std. Dev. 26 28 18

B-graded (Blue)
Mean 62% 57% 56%
Std. Dev. 30 33 22

C-graded (Yellow)
Mean 51% 45% 42%
Std. Dev. 31 31 21

D-graded (Red)
Mean 44% 39% 34%
Std. Dev. 29 30 21

Total
Mean 54% 49% 46%
Std. Dev. 31 33 24

Notes: this table shows the descriptive statistics of the relevant variables for 2015. Source: see data description.
Own elaboration.
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Table 8.3.11: Neighborhood change: 1950-2015

Panel A: % neighborhoods below msa average in 1950

White %
% housing units above

msa median home value
% families above msa

median family income

A-graded (Green) 5% 4% 18%
B-graded (Blue) 6% 16% 20%
C-graded (Yellow) 15% 48% 40%
D-graded (Red) 47% 79% 72%

Panel B: % neighborhoods remaining still below msa average in 2015

White share
% housing units above

msa median home value
% families above msa

median family income

A-graded (Green) 16% 69% 3%
B-graded (Blue) 54% 63% 31%
C-graded (Yellow) 75% 70% 65%
D-graded (Red) 79% 69% 75%

Notes: this table shows the share of holc neighborhoods below the msa means in 1950. and the share still below in
2015. Source: see data description. Own elaboration.

Table 8.3.12: Descriptive statistics for tree pixels

% tree pixels 2000 % tree pixels 2015 Tree growth

A-graded (Green)
Mean 30% 37% 112%
Std. Dev. 25 26 307

B-graded (Blue)
Mean 23% 29% 225%
Std. Dev. 25 024 906

C-graded (Yellow)
Mean 18% 23% 316%
Std. Dev. 21 20 709

D-graded (Red)
Mean 16% 21% 381%
Std. Dev. 20 20 1551

Total
Mean 20% 25% 292%
Std. Dev. 23 22 1015

Notes: this table shows the descriptive statistics for the share of tree pixels and tree growth. Source: see data
description. Own elaboration.

55



Table 8.3.13: Induced measurement error, population counts

(1) (2) (3)
Census-to-Redlining Redlining-to-Census

Geographic unit: holc neighborhood crosswalk crosswalk

D-graded -2,541.61∗∗∗ -2,216.91∗∗∗ -290.84∗∗∗
(565) (530) (78)

Area FE D-C pair D-C pair D-C pair
Mean Dep. Var. 8669.24 8017.92 3254.48
Observations 1,350 1,350 2,760
Adjusted R2 0.43 0.45 0.37
Adjusted within R2 0.03 0.02 0.02

Notes: All columns contain border-pair, so all coefficients are estimated on the basis of within D-C pairs. The
dependent variable is population counts 2010 in each geographic unit obtained from raster data. Samples are
restricted to adjacent D-C neighborhoods. Column (1) represents the results for the true values in holc polygons;
Column (2) employs the Census-to-Redlining Crosswalks to population counts obtained for 2010 tracts to perform
the regression at the holc level; Column (3) estimates the regression at the 2010 tract level, assigning grades
to tracts based on spatial overlap. Standard errors are clustered by Census division level and ***, **, * indicate
significance at the 1, 5, and 10 percent.

Table 8.3.14: Induced measurement error, population density

(1) (2) (3)
Census-to-Redlining Redlining-to-Census

Geographic unit holc neighborhood crosswalk crosswalk

D-graded -422.02∗∗∗ -400.22∗∗ -240.06∗∗∗
(41.52) (148.93) (58.14)

Area FE D-C pair D-C pair D-C pair
Mean Dep. Var. 3225.11 2899.59 5366.61
Observations 1,350 1,350 2,760
Adjusted R2 0.80 0.88 0.74
Adjusted within R2 0.03 0.06 0.00

Notes: All columns contain border-pair, so all coefficients are estimated on the basis of within D-C pairs. The
dependent variable is population density ( per square kilometer) in each geographic unit obtained from raster data
in 2010. Samples are restricted to adjacent D-C neighborhoods. Column (1) represents the results for the true values
in holc polygons directly obtained from raster data; Column (2) employs the Census-to-Redlining Crosswalks
to population counts obtained from raster data directly at the 2010 tracts to perform the regression at the holc

level; Column (3) estimates the regression at the 2010 tract level, assigning grades to tracts based on spatial overlap.
Standard errors are clustered by Census division level and ***, **, * indicate significance at the 1, 5, and 10 percent.
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Table 8.3.15: Persistence of redlining assigning grades to 1940 tracts, all D-C tracts

(1) (2) (3)
Dependent % housing units above % families above msa

variables % white msa median home value median family income

D-graded -18.67∗∗∗ -22.26∗∗∗ -16.58∗∗∗
(1.11) (1.74) (0.77)

D-graded × Post1977 9.25∗∗∗ 18.66∗∗∗ 8.99∗∗∗
(1.38) (2.19) (1.12)

Area FE msa msa msa

Mean Dep. Var. 60.99 37.5 36.97
Observations 43,399 42,411 38,495
Adjusted R2 0.33 0.24 0.25
Adjusted within R2 0.05 0.08 0.10
Average Persistence 50% 16% 46%

Notes: All columns contain msa and year fixed effects, so coefficients are estimated on the basis of all D-C
neighborhoods within msa. The sample consists of all 1940 tracts assigned a D-C grade. The grade assignment is
based on the spatial overlap between grades and 1940 Census tracts. The Post1977 period is 1980-2015. Average
persistence is computed as the ratio of the D-C gap after the passing of the cra to the gap before. Due to data
availability, columns (1) and (2) are estimated for the 1940-1980 period and column (3) for 1950 -1980. Standard
errors are clustered by Census division- decade and ***, **, * indicate significance at the 1, 5, and 10 percent.
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Table 8.3.16: Persistence of redlining grades to 1940 tracts, bordering D-C tracts

(1) (2) (3)
Dependent % housing units above % families above msa

variables % white msa median home value median family income

D-graded -12.12∗∗∗ -15.14∗∗∗ -7.96∗∗∗
(1.05) (1.08) (0.52)

D-graded × Post1977 6.83∗∗∗ 10.67∗∗∗ 3.13∗∗∗
(1.23) (1.29) (0.64)

Area FE D-C pair D-C pair D-C pair
Mean Dep. Var. 60.74 35.38 35.83
Observations 19,780 19,539 17,570
Adjusted R2 0.70 0.48 0.57
Adjusted within R2 0.05 0.07 0.06
Average Persistence 44% 29% 61%

Notes: All columns contain border-pair and year fixed effects, so coefficients are estimated on the basis of within
D-C pairs. The sample consists of adjacent 1940 tracts assigned a D-C grade that share the longest border. The
grade assignment is based on the spatial overlap between grades and 1940 Census tracts. The Post1977 period is
1980-2015. Average persistence is computed as the ratio of the D-C gap after the passing of the cra to the gap
before. Due to data availability, columns (1) and (2) are estimated for the 1940-1980 period and column (3) for 1950

-1980. Standard errors are clustered by Census division- decade and ***, **, * indicate significance at the 1, 5, and 10

percent.

Table 8.3.17: Within msa persistence of redlining, 1980

(1) (2) (3)
Dependent % housing units above % families above msa

variables % white msa median home value median family income

D-graded -13.11∗∗∗ -18.92∗∗∗ -11.67∗∗∗
(1.08) (1.33) (0.64)

D-graded × Post1977 0.41 5.73∗∗∗ 2.50∗∗∗
(1.30) (1.86) (0.85)

Area FE msa msa msa

Mean Dep. Var. 66.36 44.05 42.82
Observations 12,423 12,189 9,911
Adjusted R2 0.30 0.26 0.34
Adjusted within R2 0.06 0.12 0.13
Average Persistence 97% 70% 79%

Notes: All columns contain msa and year fixed effects, so coefficients are estimated on the basis of all D-C
neighborhoods within msa. The Post1977 period is restricted to 1980. Average persistence is computed as the ratio
of the D-C gap after the passing of the cra to the gap before. Due to data availability, columns (1) and (2) are
estimated for the 1940-1980 period and column (3) for 1950 -1980. Standard errors are clustered by Census division
- year and ***, **, * indicate significance at the 1, 5, and 10 percent.
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Table 8.3.18: Within bordering D-C neighborhoods persistence of redlining, 1980

(1) (2) (3)
Dependent % housing units above % families above msa

variables % white msa median home value median family income

D-graded -8.23∗∗∗ -10.75∗∗∗ -6.13∗∗∗
(0.66) (0.94) (0.46)

D-graded × Post1977 2.86 5.83∗∗∗ 1.98∗∗
(1.97) (2.08) (0.86)

Area FE D-C pair D-C pair D-C pair
Mean Dep. Var. 62.36 38.98 39.01
Observations 6,110 6,005 4,878
Adjusted R2 0.66 0.63 0.73
Adjusted within R2 0.05 0.10 0.12
Average Persistence 65% 46% 68%

Notes: All columns contain border-pair and year fixed effects, so all coefficients are estimated on the basis of within
D-C pair. The Post1977 period is restricted to 1980. Average persistence is computed as the ratio of the D-C gap
after the passing of the cra to the gap before. Due to data availability, columns (1) and (2) are estimated for the
1940-1980 period and column (3) for 1950 -1980. Standard errors are clustered by Census division-year and ***, **, *
indicate significance at the 1, 5, and 10 percent.
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Table 8.3.19: Within placebo D-C pair

(1) (2) (3)
Dependent % housing % families
variables % white units above

above msa

msa median
median family
home income
value income

Placebo D-graded 0.436 0.055 0.224
(1.1201) (0.5086) (0.4351)

Water or park amenities -1.763 -2.086∗∗ -2.091∗∗∗
(1.1120) (0.9905) (0.6739)

Placebo D-graded × Water or park amenities -0.063 1.351∗ 0.465
(1.4098) (0.7626) (0.5311)

Placebo D-graded × Post1977 0.277 0.321 -0.016
(1.3250) (0.8808) (0.6192)

Water or park amenities × Post1977 5.119∗∗∗ 2.496∗ 1.728∗
(1.1404) (1.4049) (0.8918)

Placebo D-graded × Water or park amenities × Post1977 -0.208 -1.186 -0.063
(1.6185) (1.1733) (0.7193)

Area FE D-C pair D-C pair D-C pair
Mean Dep. Var. 71.05 53.96 49.23
Observations 8,893 8,790 7,902
Adjusted R2 0.71 0.58 0.66
Adjusted within R2 0.00 0.00 0.00

Notes: All columns contain border-pair and year fixed effects, so all coefficients are estimated on the basis of
within placebo D-C pair. The placebo D-C pairs are found after assigning the placebo grades to all neighborhoods
by keeping the pair that shares the longest border with the placebo D-graded and is longer than 500 meters.
The Post1977 period is 1980-2015. Water or park amenities is a dummy variable that takes value one for those
neighborhoods in which the 500m buffers around water features or parks cover at least 20% of the area. Family
income is only available starting with the 1950 Census columns (1) and (2) are estimated for 1940-2015 and column
(3) for 1950-2015. Standard errors are clustered by Census division-year and ***, **, * indicate significance at the 1,
5, and 10 percent.
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Table 8.3.20: All D-C neighborhoods and water or parks above msa median

(1) (2) (3)
Dependent % housing % families
variables % white units above above msa

msa median median family
home value income

D-graded -14.501∗∗∗ -14.257∗∗∗ -10.178∗∗∗
(1.4003) (1.5557) (0.8313)

D-graded × Post1977 5.126∗∗∗ 7.165∗∗∗ 2.371∗∗
(1.6494) (2.0016) (1.0502)

Water or park amenities 1.878∗∗ 1.394 0.415
(0.7910) (1.0148) (0.5615)

Water or park amenities × Post1977 5.790∗∗∗ 1.991 2.201∗∗
(1.1782) (1.5897) (0.9423)

D-graded × Water or park amenities 1.537 -6.884∗∗∗ -1.963∗∗
(1.0603) (0.8685) (0.7785)

D-graded × Water or park amenities × Post1977 -2.442∗ 6.002∗∗∗ 0.971
(1.3277) (1.4832) (1.1797)

Area FE msa msa msa

Mean Dep. Var. 66.36 44.05 42.82
Observations 22,401 22,172 19,885
Adjusted R2 0.38 0.24 0.28
Adjusted within R2 0.05 0.07 0.08
Average Persistence Water or Parks 79% 38% 72%
Average Persistence No Water nor Parks 65% 50% 77%

Notes: All columns contain msa and year fixed effects, so coefficients are estimated on the basis of all D-C
neighborhoods within msa. The Post1977 period is 1980-2015. Water or park amenities is a dummy variable that
takes value one for those neighborhoods in which the 500m buffers around water features or parks cover at least a
share of the neighborhood area larger than the msa median share of any of the features. Average persistence is
computed as the ratio of the D-C gap after the passing of the cra to the gap before for areas with and without
water or parks. Family income is only available starting with the 1950 Census columns (1) and (2) are estimated for
1940-2015 and column (3) for 1950-2015. Standard errors are clustered by Census-division and decade ***, **, *
indicate significance at the 1, 5, and 10 percent.
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Table 8.3.21: Bordering D-C neighborhoods and water or parks above msa median

(1) (2) (3)
Dependent % housing % families
variables % white units above above msa

msa median median family
home value income

D-graded -8.04∗∗∗ -7.98∗∗∗ -5.46∗∗∗
(1.03) (1.16) (0.64)

Water or park amenities -1.18 -1.11 -1.22∗
(1.20) (1.00) (0.64)

D-graded × Water or park amenities -0.28 -4.33∗∗∗ -1.02
(1.23) (0.94) (0.73)

D-graded × Post1977 4.48∗∗∗ 5.40∗∗∗ 2.13∗∗
(1.53) (1.47) (0.89)

Water or park amenities × Post1977 6.12∗∗∗ 5.06∗∗∗ 3.94∗∗∗
(1.44) (1.54) (0.84)

D-graded × Water or park amenities × Post1977 -1.11 2.91∗ -0.76
(1.60) (1.62) (1.09)

Area FE D-C pair D-C pair D-C pair
Mean Dep. Var. 62.36 38.98 39.01
Observations 11,030 10,925 9,798
Adjusted R2 0.73 0.54 0.63
Adjusted within R2 0.04 0.05 0.06
Average Persistence Water or Parks 59% 32% 79%
Average Persistence No Water nor Parks 44% 32% 61%

Notes: All columns contain border-pair and year fixed effects, so all coefficients are estimated on the basis of within
placebo D-C pair. Water and park amenities is a dummy variable that takes value one for those neighborhoods in
which the 500m buffers around water features or parks cover at least a share of the neighborhood area larger than
the msa median share of any of the features. Average persistence is computed as the ratio of the D-C gap after the
passing of the cra to the gap before for areas with and without amenities. Family income is only available starting
with the 1950 Census columns (1) and (2) are estimated for 1940-2015 and column (3) for 1950-2015. Standard
errors are clustered by Census-division and decade ***, **, * indicate significance at the 1, 5, and 10 percent.
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Table 8.3.22: Natural amenities (10% threshold) mitigate the persistence of redlining, all D-C
neighborhoods within the same msa

(1) (2) (3)
Dependent % housing % families
variables % white units above above msa

msa median median family
home value income

D-graded -13.15∗∗∗ -14.23∗∗∗ -9.53∗∗∗
(1.08) (1.58) (0.94)

D-graded × Post1977 3.54∗∗ 5.90∗∗∗ 1.15
(1.52) (2.18) (1.16)

Water or park amenities 2.37∗∗∗ 1.65 0.66
(0.64) (1.04) (0.51)

Water or park amenities × Post1977 3.89∗∗∗ 1.06 1.77∗
(1.09) (1.54) (0.89)

D-graded × Water or park amenities -0.43 -6.34∗∗∗ -2.71∗∗∗
(0.92) (0.83) (0.64)

D-graded × Water or park amenities × Post1977 0.29 7.43∗∗∗ 2.71∗∗
(1.37) (1.44) (1.06)

Area FE msa msa msa

Mean Dep. Var. 66.36 44.05 42.82
Observations 22,401 22,172 19,885
Adjusted R2 0.38 0.24 0.28
Adjusted within R2 0.05 0.07 0.08
Average Persistence Water or Parks 72% 35% 68%
Average Persistence No Water nor Parks 73% 59% 88%

Notes: All columns contain msa and year fixed effects, so coefficients are estimated on the basis of all D-C
neighborhoods within msa. The Post1977 period is 1980-2015. Water or park amenities is a dummy variable that
takes value one for those neighborhoods in which the 500m buffers around water features or parks cover at least
10% of the area. Average persistence is computed as the ratio of the D-C gap after the passing of the cra to the
gap before for areas with and without amenities. Family income is only available starting with the 1950 Census
columns (1) and (2) are estimated for 1940-2015 and column (3) for 1950-2015. Standard errors are clustered by
Census-division and decade ***, **, * indicate significance at the 1, 5, and 10 percent.
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Table 8.3.23: Natural amenities (10% threshold) mitigate the persistence of redlining, bordering
D-C neighborhoods

(1) (2) (3)
Dependent % housing % families
variables % white units above above msa

msa median median family
home value income

D-graded -7.25∗∗∗ -8.12∗∗∗ -5.06∗∗∗
(1.12) (1.17) (0.66)

D-graded × Post1977 1.30 4.05∗∗ 0.20
(1.54) (1.55) (1.02)

Water or park amenities 0.17 -1.08 -1.86∗∗
(1.04) (1.32) (0.84)

Water or park amenities × Post1977 1.84 3.24∗ 2.46∗∗
(1.37) (1.73) (1.09)

D-graded × Water or park amenities -1.43 -3.91∗∗∗ -1.70∗∗∗
(1.27) (0.90) (0.62)

D-graded × Water or park amenities × Post1977 3.91∗∗ 5.03∗∗∗ 2.38∗∗
(1.54) (1.52) (1.10)

Area FE D-C pair D-C pair D-C pair
Mean Dep. Var. 62.36 38.98 39.01
Observations 11,030 10,925 9,798
Adjusted R2 0.73 0.54 0.63
Adjusted within R2 0.04 0.05 0.06
Average Persistence Water or Parks 40% 25% 62%
Average Persistence No Water nor Parks 82% 50% 96%

Notes: All columns contain border-pair and year fixed effects, so all coefficients are estimated on the basis of within
placebo D-C pair. The Post1977 period is 1980-2015. All columns include border-pair and year fixed effects. Water
and park amenities is a dummy variable that takes value one for those neighborhoods in which the 500m buffers
around water features or parks cover at least 10% of the area. Average persistence is computed as the ratio of the
D-C gap after the passing of the cra to the gap before for areas with and without amenities. Family income is
only available starting with the 1950 Census columns (1) and (2) are estimated for 1940-2015 and column (3) for
1950-2015. Standard errors are clustered by Census-division and decade ***, **, * indicate significance at the 1, 5,
and 10 percent.
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Table 8.3.24: Natural amenities (30% threshold) mitigate the persistence of redlining, all D-C
neighborhoods within the same msa

(1) (2) (3)
Dependent % housing % families
variables % white units above above msa

msa median median family
home value income

D-graded -13.14∗∗∗ -16.20∗∗∗ -10.70∗∗∗
(1.10) (1.33) (0.76)

D-graded × Post1977 3.88∗∗∗ 8.93∗∗∗ 2.68∗∗∗
(1.41) (1.78) (0.94)

Water or park amenities 1.67∗∗∗ 3.66∗∗∗ 1.18∗∗
(0.61) (0.82) (0.54)

Water or park amenities × Post1977 4.00∗∗∗ 0.53 2.40∗∗
(1.01) (1.45) (0.96)

D-graded × Water or park amenities -0.64 -5.13∗∗∗ -1.52∗∗
(1.28) (0.74) (0.68)

D-graded × Water or park amenities × Post1977 -0.55 4.29∗∗∗ 0.58
(1.95) (1.19) (0.95)

Area FE msa msa msa

Mean Dep. Var. 66.36 44.05 42.82
Observations 22,401 22,172 19,885
Adjusted R2 0.38 0.24 0.29
Adjusted within R2 0.04 0.07 0.08
Average Persistence Water or Parks 76% 38% 73%
Average Persistence No Water nor Parks 70% 45% 75%

Notes: All columns contain msa and year fixed effects, so coefficients are estimated on the basis of all D-C
neighborhoods within msa. The Post1977 period is 1980-2015. Water or park amenities is a dummy variable that
takes value one for those neighborhoods in which the 500m buffers around water features or parks cover at least
30% of the area. Average persistence is computed as the ratio of the D-C gap after the passing of the cra to the
gap before for areas with and without amenities. Family income is only available starting with the 1950 Census
columns (1) and (2) are estimated for 1940-2015 and column (3) for 1950-2015. Standard errors are clustered by
Census-division and decade ***, **, * indicate significance at the 1, 5, and 10 percent.
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Table 8.3.25: Natural amenities (30% threshold) mitigate the persistence of redlining, bordering
D-C neighborhoods

(1) (2) (3)
Dependent % housing % families
variables % white units above above msa

msa median median family
home value income

D-graded -7.53∗∗∗ -9.52∗∗∗ -5.75∗∗∗
(0.97) (1.01) (0.62)

D-graded × Post1977 2.82∗ 6.17∗∗∗ 1.61∗∗
(1.51) (1.30) (0.81)

Water or park amenities -0.81 -0.58 -1.88∗∗
(1.18) (0.87) (0.86)

Water or park amenities × Post1977 3.46∗∗ 2.39 3.68∗∗∗
(1.60) (1.59) (1.23)

D-graded × Water or park amenities -1.36 -2.44∗∗∗ -0.65
(1.40) (0.86) (0.76)

D-graded × Water or park amenities × Post1977 1.93 2.21∗ -0.02
(1.96) (1.31) (1.03)

Area FE D-C pair D-C pair D-C pair
Mean Dep. Var. 62.36 38.98 39.01
Observations 11,030 10,925 9,798
Adjusted R2 0.73 0.53 0.63
Adjusted within R2 0.04 0.05 0.06
Average Persistence Water or Parks 47% 30% 75%
Average Persistence No Water nor Parks 63% 35% 72%

Notes: All columns contain border-pair and year fixed effects, so all coefficients are estimated on the basis of within
placebo D-C pair. The Post1977 period is 1980-2015. All columns include border-pair and year fixed effects. Water
and park amenities is a dummy variable that takes value one for those neighborhoods in which the 500m buffers
around water features or parks cover at least 30% of the area. Average persistence is computed as the ratio of the
D-C gap after the passing of the cra to the gap before for areas with and without amenities. Family income is
only available starting with the 1950 Census columns (1) and (2) are estimated for 1940-2015 and column (3) for
1950-2015. Standard errors are clustered by Census-division and decade ***, **, * indicate significance at the 1, 5,
and 10 percent.
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Table 8.3.26: All D-C neighborhoods and amenities-year fixed effects

(1) (2) (3)
Dependent % housing % families
variables % white units above above msa

msa median median family
home value income

D-graded -13.06∗∗∗ -15.63∗∗∗ -10.14∗∗∗
(1.02) (1.30) (0.78)

D-graded × Post1977 3.90∗∗ 8.33∗∗∗ 2.33∗∗
(1.48) (1.86) (1.01)

D-graded × Water or park amenities -0.64 -5.06∗∗∗ -2.15∗∗∗
(1.14) (0.87) (0.64)

D-graded × Water or park amenities × Post1977 -0.32 4.60∗∗∗ 1.18
(1.67) (1.38) (0.94)

Area FE msa msa msa

Mean Dep. Var. 66.36 44.05 42.82
Observations 22,401 22,172 19,885
Adjusted R2 0.38 0.24 0.28
Adjusted within R2 0.04 0.07 0.08

Notes: All columns contain msa and amenities-year fixed effects, so all coefficients are estimated on the basis of all
D-C pairs. The Post1977 period is 1980-2015. Water and park amenities is a dummy variable that takes value one
for those neighborhoods in which the 500m buffers around water features or parks cover at least 20% of the area.
Due to data availability, columns (1) and (2) are estimated for the 1940-2015 period and column (3) for 1950-2015.
Standard errors are clustered by Census-division and decade ***, **, * indicate significance at the 1, 5, and 10

percent.
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Table 8.3.27: Bordering D-C neighborhoods persistence and amenities-year fixed effects

(1) (2) (3)
Dependent % housing % families
variables % white units above above msa

msa median median family
home value income

D-graded -7.92∗∗∗ -9.23∗∗∗ -5.51∗∗∗
(0.99) (1.05) (0.67)

D-graded × Post1977 2.44 5.55∗∗∗ 1.15
(1.48) (1.35) (0.94)

D-graded × Water or park amenities -0.58 -2.63∗∗∗ -1.11
(1.17) (0.79) (0.70)

D-graded × Water or park amenities × Post1977 2.54∗ 3.12∗∗ 1.06
(1.49) (1.37) (1.06)

Area FE D-C pair D-C pair D-C pair
Mean Dep. Var. 62.36 38.98 39.01
Observations 11,030 10,925 9,798
Adjusted R2 0.73 0.53 0.63
Adjusted within R2 0.03 0.05 0.06

Notes: All columns contain border-pair and amenities-year fixed effects, so all coefficients are estimated on the
basis of within D-C pairs. The Post1977 period is 1980-2015. Water and park amenities is a dummy variable that
takes value one for those neighborhoods in which the 500m buffers around water features or parks cover at least
20% of the area. Due to data availability, columns (1) and (2) are estimated for the 1940-2015 period and column (3)
for 1950-2015. Standard errors are clustered by Census-division and decade ***, **, * indicate significance at the 1, 5,
and 10 percent.
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Table 8.3.28: Parks also have a strong effect in housing values

(1) (2) (3)
Dependent % housing units above % families
variables % white msa median above msa

home value median family
income

Park amenities 1.50∗∗∗ 3.72∗∗∗ 1.13∗∗∗
(0.48) (1.01) (0.42)

Park amenities × Post1977 2.25∗∗∗ -0.57 1.65∗
(0.82) (1.44) (0.86)

D-graded × Park amenities -3.66∗∗∗ -6.60∗∗∗ -3.09∗∗∗
(1.06) (1.02) (0.42)

D-graded × Park amenities × Post1977 -1.38 5.45∗∗∗ 0.31
(1.37) (1.35) (0.62)

Area FE msa msa msa

Water controls YES YES YES
Mean Dep. Var. 66.36 44.05 42.82
Observations 22,401 22,172 19,885
Adjusted R2 0.38 0.24 0.29
Adjusted within R2 0.05 0.08 0.08
Average Persistence Modified -182% 12% -24%
Average Persistence Unmodified 66% 64% 82%
Average Persistence Parks 83% 36% 77%
Average Persistence No Water nor Parks 67% 44% 73%

Notes: All columns contain msa and year fixed effects, so coefficients are estimated on the basis of all D-C
neighborhoods within msa. Post1977 is defined from 1980-2015. All columns control for water ( a dummy with
value one when at least 20% of the neighborhoods’ area is covered by the 500m buffer around the water features),
modifications and its interactions with being D-graded and Post1977. Water amenities is a dummy variable that
takes value one for those neighborhoods in which the 500m buffers around water features cover at least 20% of the
area. Modification is an indicator for waterfront redevelopment projects (1 if the neighborhood falls within the 500

meter buffer around the project, 0 otherwise). Standard errors are clustered by Census division-year and ***, **, *
indicate significance at the 1, 5, and 10 percent.
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Table 8.3.29: Waterfront modifications drive the effect of water amenities, as they happen

(1) (2) (3)
% % %

Dependent variables white housing families
units above
above msa

msa median
median family
home income
value income

D-graded -12.560∗∗∗ -14.705∗∗∗ -9.928∗∗∗
(1.0081) (1.2973) (0.7786)

D-graded × Post1977 4.184∗∗∗ 8.114∗∗∗ 2.673∗∗∗
(1.4313) (1.7330) (0.9963)

Water amenities 1.978∗ 1.219 1.548∗
(1.0787) (1.2099) (0.9003)

Water amenities × Post1977 4.870∗∗ 1.799 0.786
(1.9180) (2.1013) (1.2766)

D-graded × Water amenities 4.560∗∗∗ -2.432∗∗ 0.317
(1.5681) (1.0656) (1.1642)

D-graded × Water amenities × Post1977 -0.984 -0.838 -0.056
(2.9618) (2.0709) (1.7225)

Water amenities × Modification × Post1977 -0.280 4.845 0.982
(5.7739) (4.1092) (4.9905)

D-graded × Water amenities × Modification × Post1977 12.959∗∗∗ 8.424∗∗ 9.367∗
(3.6281) (4.0234) (4.8529)

Area FE msa msa msa

Park controls YES YES YES
Mean Dep. Var. 66.36 44.05 42.82
Observations 22,401 22,172 19,885
Adjusted R2 0.38 0.24 0.29
Adjusted within R2 0.05 0.07 0.08
Average Persistence Modified -102% 8% -25%
Average Persistence Unmodified 60% 58% 73%
Average Persistence No Water nor Parks 67% 45% 73%

Notes: All columns contain msa and year fixed effects, so coefficients are estimated on the basis of all D-C
neighborhoods within msa. Post1977 is defined from 1980-2015. All columns control for parks ( a dummy with
value one when at least 20% of the neighborhoods’ area is covered by the 500m buffer around the parks) and its
interactions with being D-graded and Post1977. Water amenities is a dummy variable that takes value one for those
neighborhoods in which the 500m buffers around water features cover at least 20% of the area. Modification is an
indicator for waterfront redevelopment projects (1 if the neighborhood falls within the 500 meter buffer around the
project, 0 otherwise). Standard errors are clustered by Census division-year and ***, **, * indicate significance at the
1, 5, and 10 percent.
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Table 8.3.30: Waterfront modifications drive the effect of water amenities, as they happen

(1) (2) (3)
Dependent % housing units above % families
variables % white msa median above msa

home value median family
income

Park amenities 1.55∗∗∗ 3.71∗∗∗ 1.09∗∗
(0.49) (1.01) (0.44)

Park amenities × Post1977 2.21∗∗∗ -0.56 1.65∗
(0.83) (1.44) (0.88)

D-graded × Park amenities -3.58∗∗∗ -6.69∗∗∗ -3.15∗∗∗
(1.05) (1.03) (0.42)

D-graded × Park amenities × Post1977 -1.41 5.60∗∗∗ 0.41
(1.36) (1.35) (0.62)

Area FE msa msa msa

Water controls YES YES YES
Mean Dep. Var. 66.36 44.05 42.82
Observations 22,401 22,172 19,885
Adjusted R2 0.38 0.24 0.29
Adjusted within R2 0.05 0.07 0.08
Average Persistence Modified -102% 8% -25%
Average Persistence Unmodified 60% 58% 73%
Average Persistence Parks 83% 36% 76%
Average Persistence No Water nor Parks 67% 45% 73%

Notes: All columns contain msa and year fixed effects, so coefficients are estimated on the basis of all D-C
neighborhoods within msa. Post1977 is defined from 1980-2015. All columns control for water ( a dummy with
value one when at least 20% of the neighborhoods’ area is covered by the 500m buffer around the water features),
modifications and its interactions with being D-graded and Post1977. Park amenities is a dummy variable that takes
value one for those neighborhoods in which the 500m buffers around park features cover at least 20% of the area.
Modification is an indicator for waterfront redevelopment projects (1 if the neighborhood falls within the 500 meter
buffer around the project, 0 otherwise). Standard errors are clustered by Census division-year and ***, **, * indicate
significance at the 1, 5, and 10 percent.

71



Table 8.3.31: Reduced form results

(1) (2) (3)
Dependent % white % housing units % families above
variables above msa median msa median

home value family income

D-graded -5.660∗∗ -0.599 -5.542∗∗∗
(2.4838) (1.8869) (1.5374)

∆ Plague Exposure 88.469 16.474 -2.667
(112.2846) (53.2663) (30.8141)

D-graded × ∆ Plague Exposure 1793.030∗∗∗ 493.545 956.773∗∗
(683.4471) (468.8745) (459.0282)

∆ 1 SD ∆ Plague Exposure 19.91 5.48 10.62
Mean Dep. Var. 43.43 38.42 35.68
Observations 1,450 1,450 1,450
Adjusted R2 0.08 0.39 0.19
Adjusted within R2 0.03 0.01 0.04

Notes: This table shows the results from regressing the dependent variables in 2015 for the entire D-C sample on
a dummy for being D-graded, the experimented change in plague exposure and their interaction. All columns
include msa fixed effects. All columns control for the presence of water, park amenities, waterfront modifications
and their respective interactions with being D-graded. Changes in tree canopy are defined as the increase in tree
detected pixels during the two periods with aerial imagery. msa without plagues are excluded. Standard errors are
robust and ***, **, * indicate significance at the 1, 5, and 10 percent.
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Table 8.3.32: Second stage

(1) (2) (3)
Dependent % white % housing units % families above
variables above msa median msa median

home value family income

D-graded -71.166∗∗∗ -18.403 -39.060∗∗
(24.1802) (16.7142) (16.4506)

∆̂TC 0.414 0.077 -0.012
(0.5248) (0.2490) (0.1440)

D-graded × ∆̂TC 27.727∗∗∗ 7.551 14.282∗∗
(10.1096) (6.9757) (6.8543)

Area FE msa msa msa

Amenities and modifications YES YES YES
Mean Dep. Var. 43.43 38.42 35.68
Observations 1,450 1,450 1,450

Notes: This table shows the results from regressing the dependent variables in 2015 on the entire D-C sample
on a dummy for being D-graded, the predicted increase in tree canopy and the interaction. The predicted
increase in tree canopy is obtained by regressing the increase in tree pixels on a dummy for being D-graded, the
experimented plague exposure and the interactions, controlling for the presence of water and park amenities,
waterfront modifications and the interactions with redlining. The first stage of this table is in Panel A of Table
6. All columns control for the presence of water, park amenities, waterfront modifications and their respective
interactions with being D-graded. Changes in tree canopy are defined as the increase in tree detected pixels during
the two periods with aerial imagery. msa without plagues are excluded. Standard errors are robust and ***, **, *
indicate significance at the 1, 5, and 10 percent.
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Table 8.3.33: The effect of waterfront modifications in ownership suggests gentrification

(1) (2) (3)
% black

% % families
black wite above

owners owners black
msa

Dependent median
variables family

income

D-graded 8.807∗∗∗ -10.106∗∗∗ -8.606∗∗∗
(0.9972) (1.0050) (1.2680)

D-graded × Post1977 -0.318 2.134 0.333
(1.5781) (1.4864) (1.4431)

Water amenities -2.316∗∗ 1.832∗∗ 0.381
(0.9458) (0.9133) (1.8954)

Water amenities × Post1977 -3.687∗ 6.305∗∗∗ 1.398
(2.0825) (1.9358) (2.1003)

D-graded × Water amenities -3.685∗∗ 3.583∗∗ 1.878
(1.4306) (1.4266) (1.8239)

D-graded × Water amenities × Post1977 1.069 -1.467 -0.575
(2.8888) (3.0055) (2.0801)

Water amenities × Modification -1.428 2.311 -2.515
(2.4364) (2.5563) (3.5137)

Water amenities × Modification × Post1977 -0.928 -4.888 -4.729
(4.4306) (5.4675) (4.5819)

D-graded × Water amenities × Modification -3.688∗ 3.929∗ -5.925
(1.9606) (2.0279) (6.6798)

D-graded × Water amenities × Modification × Post1977 -8.646∗∗∗ 11.740∗∗∗ 9.075
(2.5329) (3.4447) (7.6124)

Area FE msa msa msa

Park Controls YES YES YES
Mean Dep. Var. 22.39 71.78 53.92
Observations 22,379 22,379 16,259
Adjusted R2 0.24 0.32 0.15
Adjusted within R2 0.04 0.04 0.04
Average Persistence Modified -451% -378% 30%
Average Persistence Unmodified 115% 90% 104%
Average Persistence No Water nor Parks 96% 79% 96%

Notes: All columns contain msa and year fixed effects, so coefficients are estimated on the basis of all D-C
neighborhoods within msa. Post1977 is defined from 1980-2015. Water amenities is a dummy variable that takes
value one for those neighborhoods in which the 500m buffers around water features covers at least 20% of the area.
Modification is an indicator for waterfront redevelopment projects (1 if the neighborhood falls within the 500 meter
buffer around the project, 0 otherwise). All columns control for parks ( a dummy with value one when at least
20% of the neighborhoods’ area is covered by the 500m buffer around the parks) and its interactions with being
D-graded and Post1977. Ownership shares are computed with respect to occupied housing units for the period
1940-2015. Column (3) is the share of black families with family income above the msa median black family income,
and the estimating period in 1960-2015. Standard errors are clustered by Census division-year and ***, **, * indicate
significance at the 1, 5, and 10 percent.
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Table 8.3.34: Parks reduce black ownership

(1) (2) (3)
% black

% % families
black wite above

owners owners black msa

Dependent median family
variables

income

Park amenities -1.18∗∗ 1.19∗∗ 1.04
(0.53) (0.50) (1.24)

Park amenities × Post1977 -1.43∗ 2.73∗∗∗ 1.04
(0.76) (0.81) (1.46)

D-graded × Park amenities 5.04∗∗∗ -3.99∗∗∗ -2.33
(0.97) (1.05) (1.59)

D-graded × Park amenities × Post1977 -3.40∗∗ -0.24 -0.37
(1.62) (1.55) (1.77)

Area FE msa msa msa

Water controls YES YES YES
Mean Dep. Var. 22.39 71.78 53.92
Observations 22,379 22,379 16,259
Adjusted R2 0.24 0.32 0.15
Adjusted within R2 0.04 0.04 0.04
Average Persistence Modified -451% -378% 30%
Average Persistence Unmodified 115% 90% 104%
Average Persistence Parks 73% 87% 100%
Average Persistence No Water nor Parks 96% 79% 96%

Notes: All columns contain msa and year fixed effects, so coefficients are estimated on the basis of all D-C
neighborhoods within msa. Post1977 is defined from 1980-2015. Park amenities is a dummy variable that takes
value one for those neighborhoods in which the 500m buffers around parks features covers at least 20% of the area.
All columns control for water ( a dummy with value one when at least 20% of the neighborhoods’ area is covered
by the 500m buffer around the water features), modifications and its interactions with being D-graded and Post1977.
Ownership shares are computed with respect to occupied housing units for the period 1940-2015. Column (3) is
the share of black families with family income above the msa median black family income, and the estimating
period in 1960-2015. Standard errors are clustered by Census division-year and ***, **, * indicate significance at the
1, 5, and 10 percent.
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Table 8.3.35: The effect of waterfront modifications in renters suggests gentrification

(1) (2)
% black renters % white renters

Variables

D-graded 5.226∗∗ -6.708∗∗∗
(2.6029) (2.5364)

D-graded × Post1977 4.074 -1.847
(3.0607) (2.9428)

Water amenities -1.813 1.497
(1.0943) (1.0210)

Water amenities × Post1977 -3.199 5.862∗∗∗
(2.0148) (1.7920)

D-graded × Water amenities -1.600 1.502
(1.6160) (1.6079)

D-graded × Water amenities × Post1977 -1.603 1.106
(2.8033) (2.9297)

Water amenities × Modification -0.333 1.334
(2.4864) (2.5652)

Water amenities × Modification × Post1977 -4.339 -3.001
(4.4242) (5.2732)

D-graded × Water amenities × Modification -1.517 2.015
(2.0740) (2.0911)

D-graded × Water amenities × Modification × Post1977 -9.881∗∗∗ 12.762∗∗∗
(2.6103) (3.3463)

Area FE msa msa

Park Controls YES YES
Mean Dep. Var. 36.05 56.99
Observations 22,387 22,387
Adjusted R2 0.44 0.47
Adjusted within R2 0.03 0.04
Average Persistence Modified -251% -277%
Average Persistence Unmodified 168% 114%
Average Persistence No Water nor Parks 178% 128%

Notes: All columns contain msa and year fixed effects, so coefficients are estimated on the basis of all D-C
neighborhoods within msa. Post1977 is defined from 1980-2015. Water amenities is a dummy variable that takes
value one for those neighborhoods in which the 500m buffers around water features covers at least 20% of the area.
Post1977 is defined from 1980-2015. Modification is an indicator for waterfront redevelopment projects (1 if the
neighborhood falls within the 500 meter buffer around the project, 0 otherwise). All columns control for parks
( a dummy with value one when at least 20% of the neighborhoods’ area is covered by the 500m buffer around
the parks) and its interactions with being D-graded and Post1977. Renters shares are computed with respect to
occupied housing units. Standard errors are clustered by Census division-year and ***, **, * indicate significance at
the 1, 5, and 10 percent.
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Table 8.3.36: The racial composition of renters does not change with parks

(1) (2)
% black renters % white renters

Variables

Park amenities -1.34∗ 1.37∗∗
(0.69) (0.66)

Park amenities × Post1977 -1.62 2.55∗∗
(0.98) (1.02)

D-graded × Park amenities 4.53∗∗∗ -3.31∗∗
(1.37) (1.37)

D-graded × Park amenities × Post1977 -2.53 -1.26
(1.79) (1.66)

Area FE msa msa

Water controls YES YES
Mean Dep. Var. 36.05 56.99
Observations 22,387 22,387
Adjusted R2 0.44 0.47
Adjusted within R2 0.03 0.04
Average Persistence Modified -251% -277%
Average Persistence Unmodified 168% 114%
Average Persistence Parks 116% 131%
Average Persistence No Water nor Parks 178% 128%

Notes: All columns contain msa and year fixed effects, so coefficients are estimated on the basis of all D-C
neighborhoods within msa. Post1977 is defined from 1980-2015. Park amenities is a dummy variable that takes
value one for those neighborhoods in which the 500m buffers around parks features covers at least 20% of the area.
All columns control for water ( a dummy with value one when at least 20% of the neighborhoods’ area is covered
by the 500m buffer around the water features), modifications and its interactions with being D-graded and Post1977.
Ownership shares are computed with respect to occupied housing units for the period 1940-2015. Column (3) is
the share of black families with family income above the msa median black family income, and the estimating
period in 1960-2015. Standard errors are clustered by Census division-year and ***, **, * indicate significance at the
1, 5, and 10 percent.
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Table 8.3.37: The effects of waterfront modifications on share of college graduates suggest
gentrification

(1) (2)
% black % white

some college some college
Variables

Water amenities × Post1977 2.773∗∗∗ 4.187∗∗∗
(0.9613) (1.1759)

Water amenities × Modification × Post1977 -0.690 -4.248
(3.2162) (2.9111)

D-graded × Post1977 -5.342∗∗∗ -2.882∗∗∗
(0.4032) (0.8010)

D-graded × Water amenities × Post1977 -0.931 -4.722∗∗∗
(0.7451) (1.0301)

D-graded × Water amenities × Modification × Post1977 4.217 14.833∗∗∗
(3.8071) (4.4803)

Area FE msa msa

Park Controls YES YES
Mean Dep. Var. 40.29 52.11
Observations 12084.00 9959.00
Adjusted R2 0.36 0.28
Adjusted within R2 0.04 0.03

Notes: All columns contain msa and year fixed effects, so coefficients are estimated on the basis of all D-C
neighborhoods within msa. Water amenities is a dummy variable that takes value one for those neighborhoods
in which the 500m buffers around water features covers at least 20% of the area. Variables are labeled Post1977

to indicate the estimating period is 1980-2015 due to data availability. All columns control for parks ( a dummy
with value one when at least 20% of the neighborhoods’ area is covered by the 500m buffer around the parks)
and its interactions with being D-graded. Dependent variables are the share of population, black or white, with
some college education relative to all population, black or white, aged 25 or older. Standard errors are clustered by
Census division-year and ***, **, * indicate significance at the 1, 5, and 10 percent.
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Table 8.3.38: Areas with parks have less educated residents

(1) (2)
Variables % black some college % white some college

Park amenities × Post1977 2.304∗∗∗ 4.710∗∗∗
(0.3477) (0.3450)

D-graded × Park amenities × Post1977 -2.661∗∗∗ -1.618∗∗
(0.4547) (0.6343)

Area FE msa msa

Water Controls YES YES
Mean Dep. Var. 40.29 52.11
Observations 12084.00 9959.00
Adjusted R2 0.36 0.28
Adjusted within R2 0.04 0.03

Notes: All columns contain msa and year fixed effects, so coefficients are estimated on the basis of all D-C
neighborhoods within msa. Park amenities is a dummy variable that takes value one for those neighborhoods in
which the 500m buffers around parks features covers at least 20% of the area. All columns control for water ( a
dummy with value one when at least 20% of the neighborhoods’ area is covered by the 500m buffer around the
water features), modifications and its interactions with being D-graded. Variables are labeled Post1977 to indicate
the estimating period is 1980-2015 due to data availability. All columns control for parks ( a dummy with value one
when at least 20% of the neighborhoods’ area is covered by the 500m buffer around the parks) and its interactions
with being D-graded. Dependent variables are the share of population, black or white, with some college education
relative to all population, black or white, aged 25 or older. Standard errors are clustered by Census division-year
and ***, **, * indicate significance at the 1, 5, and 10 percent.

79



Table 8.3.39: Ownership and tree canopy

(1) (2) (3) (4) (5)
% black % white % black White % black families above

Dependent owners owners renters renters black MSA
variables median family income

D-graded 67.686∗∗∗ -87.445∗∗∗ 73.892∗∗∗ -80.964∗∗∗ -55.850∗∗∗
(15.1588) (32.5380) (13.8394) (27.8195) (20.5366)

∆̂TC -0.341 0.621 -0.363 0.522 -0.057
(0.5979) (0.6687) (0.5071) (0.5669) (0.1403)

D-graded × ∆̂TC -27.418∗∗∗ 35.711∗∗ -29.829∗∗∗ 32.813∗∗∗ 20.630∗∗
(6.4121) (14.2240) (5.8832) (12.1851) (9.0193)

Mean Dep. Var. 36.49 51.36 44.52 41.25 49.57
Observations 1,450 1,450 1,450 1,450 1,430

Notes: This table shows the results from regressing the dependent variables on a dummy for being D-graded,
predicted tree canopy and the interaction. Predicted tree canopy is obtained by regressing the increase in tree pixels
on a dummy for being D-graded, the change in plague exposure and the interaction. The first stage results can be
seen in Table 6. Owner and renters shares are computed with respect to occupied housing units for 2015. Column
(4) is the share of black families with family income above the msa median black family income. All specifications
include msa fixed effects. Standard errors are robust and ***, **, * indicate significance at the 1, 5, and 10 percent.

Table 8.3.40: Education and tree canopy

(1) (2)
Dependent variables % black some college % white some college

D-graded -9.174 -21.400
(16.0140) (19.7313)

∆̂TC 0.032 0.035
(0.1633) (0.1383)

D-graded × ∆̂TC 2.477 8.949
(7.0359) (8.5988)

Mean Dep. Var. 51.24 49.57
Observations 1,447 1,447

Notes: This table shows the results from regressing the dependent variables on a dummy for being D-graded,
predicted tree canopy and the interaction. Predicted tree canopy is obtained by regressing the increase in tree pixels
on a dummy for being D-graded, the change in plague exposure and the interaction. The first stage results can
be seen in Table 6. Dependent variables are the share of population, black or white, with some college education
relative to all population, black or white, aged 25 or older. All specifications include msa fixed effects. Standard
errors are robust and ***, **, * indicate significance at the 1, 5, and 10 percent.
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