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Abstract

As reliance on solar photovoltaic (PV) generation grows, particularly in Alberta,
accounting for the impact of wildfire smoke on solar energy production is crucial. This
is particularly relevant in regions with high PV generation potential, such as Alberta, as
they are often more vulnerable to frequent and intense wildfires. This study quantifies
PV energy losses and financial impacts due to wildfire smoke in Alberta, using fine
particulate matter 2.5 (PM2.5) as a proxy for smoke pollution. Historical weather and
PM2.5 data, along with simulated PV production from actual completed, proposed,
and under-construction projects, are used to train and test the model. The simulated
data is validated against real production data. The six-year study (2018–2023) covers
major wildfire years and employs machine learning techniques, particularly random
forest regression, to isolate the effects of PM2.5 on solar production. Financial losses
are estimated in Canadian dollars, adjusted for inflation to December 2023.

Results show a PV production decline of up to 6.3% at a single solar site over
six years, with an overall average reduction of 3.91% under severe conditions. The
cumulative impact led to a 0.19% average generation loss, equating to over $4.5 million
in financial losses. Higher smoke levels consistently correlate with greater solar energy
losses, aligning with findings from other regions. The results of this study enhance our
understanding of climate change impacts on solar energy, highlighting wildfire smoke
as a relevant factor. As PV adoption expands, these findings offer valuable insights
for decision-makers and operational planners, emphasizing the need for strategies to
mitigate smoke-related disruptions and ensure energy reliability.

Keywords Photovoltaic production; Wildfires; PM2.5; Financial impact; Random forest;
Solar power.

JEL: C55, N72, P18, Q42, Q54
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1 Nomenclature

Abbreviations
AESO Alberta Energy System Operator
AUC Alberta Utilities Commission
ANN Artificial Neural Networks
BC British Columbia
CAAQS Canadian Ambient Air Quality Standards
DL Deep Learning
FWI Fire Weather Index
MSE Mean Squared Error
PM2.5 Fine particulate matter with a diameter of 2.5

micrometers or smaller measured in µg/m³ (micrograms per cubic meter)
POWER NASA Langley Research Center Prediction of

Worldwide Energy Resource
PV Photovoltaic
R2 The coefficient of determination
RFR Random Forest Regression
SAM System Advisory Model
GHI Global Horizontal Solar Irradiance
SVR Support Vector Regression
XGB XGBoost

2 Introduction

In 2023 Canada experienced its most destructive wildfire season on record with 15 million
hectares burned - more than double the previous record of 6.7 million hectares in 1989 and
seven times the historical annual average of 2.1 million hectares [1, 2]. This area, equal to
4% of Canada’s forests [1, 2], and 1.7% of its land, surpasses the size of more than half
the countries in the world [3]. Wildfires in 2023 exhibited unusually extreme behaviors,
including ”pyro-tornados” and pyrocumulonimbus events -thunderstorms generated by the
intense heat of wildfires - that can produce lightning and ignite additional fires [1, 4]. These
extreme fire events not only cause devastating losses locally, but also lead to far-reaching
impacts on air quality, particularly through the transport of wildfire smoke.

Air pollution from wildfires is often transported downwind over vast distances, and
can remain in the atmosphere for months [5, 3]. In some cases, smoke plumes have been
observed to circumnavigate the earth [6]. The smoke from Canadian wildfires in 2023 had
far-reaching impacts, affecting not only nearby communities, but also major population
centers over 1000 km away, such as New York, where the smoke dramatically blocked out
the sun, leading to the worst PM2.5 levels in half a century [3]. In Alberta, the 2023 fires
led to a provincial state of emergency with 2.7 million hectares burned [2]. PM2.5, one of
wildfire smoke’s primary by-products, is the largest contributor to poor air quality events
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in Alberta [7, 8], emerging as a critical air quality issue.
The 2023 fire season demonstrates what has already been proven in the literature. Fire

weather, encompassing weather conditions favourable for wildfires and impacting fire be-
haviour [9], is worsening in severity [10, 11, 12]. For instance, mean May-October temper-
atures for 2023 in Canada were 2.2 ◦C warmer than normal (1991-2020) [1], contributing
to extreme fire weather and wildfire escalation. Fire season, defined by the Government of
Canada as ”the annual period during which forest fires are likely to start, spread, and cause
damage” [9], is increasing in length [13] - over a 43 year period from 1961-2003, fire season
in Alberta increased by a total of 51 days [14]; in western Canada, both the area burned
and number of large fires have been trending upward since 1959 [13]. Additionally, large
fires are growing larger: the fire size in the 95th percentile was approximately 57% greater
in 2015 than in 1959 [13]. 2023 was an extreme example of what many have predicted: the
increasing frequency and severity of wildfires in Canada attributed to anthropogenic climate
change [15, 12, 8, 13]. By the end of this century, climate scenario projections conducted
by Flannigan et al. [15] show a doubling of the area burned by wildfires in Canada.

Alberta’s renewable energy transition, which aims to have 30% renewable energy by 2030
[16], could be undermined by the increasing impact of wildfires. Wildfire smoke reduces
solar irradiation by scattering and absorbing sunlight [17, 5], directly affecting the amount
of power that can be produced through solar generation. In 2023, Alberta represented 92%
of Canada’s growth in renewable energy and energy storage capacity [18], with some of the
highest solar resource potential in the country (Figure 1). However, as wildfires intensify
due to climate change, the increasing frequency and severity of smoke events may reduce
Alberta’s solar potential, inhibiting its decarbonization efforts. This could also reduce
current solar power generation, causing grid instability and financial losses. This study
aims to quantify and evaluate the effects of wildfire smoke on solar energy generation in
Alberta.

2.1 Related works

The performance of solar photovoltaic (PV) power generation is determined by various
factors, including system technology, equipment choice, and environmental conditions, with
solar irradiance (GHI) the main input for solar power [20]. Temperature is a critical factor:
higher temperatures generally reduce system efficiency [20]. Atmospheric conditions, such
as dust, particulate matter PM2.5, humidity, and wind speed, also significantly affect PV
performance [20, 21]. Dust deposition can block sunlight and degrade the quality of solar
cells, making a dust-free surface essential for optimal efficiency [20, 21]. Mekhilif et al.
found that elevated humidity reduces PV performance, while wind speed can both reduce
humidity and increase dust deposition [21].

With the intensification of wildfires in recent years, wildfire smoke has emerged as a
potential factor affecting solar power generation. PM2.5 is a commonly used indicator to
assess the concentration of smoke in the atmosphere [7]. The atmospheric effects of wildfire
smoke, particularly its interaction with solar irradiation, remain under study. Sokolik et
al. observed that smoke can scatter or absorb solar radiation depending on conditions [5].
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Figure 1: Annual photovoltaic potentials: south facing with latitude tilt (source: Govern-
ment of Canada [19]).
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Smoke can also penetrate PV cells, damaging semiconductors and reducing panel efficiency
by scattering sunlight [22].

Studies in the United States highlight these effects: during severe wildfires in September
2020, California solar power production dropped by 13.4% compared to the previous year,
despite increased system capacity [23], with reductions of 10–30% during peak hours [24]. A
2018 study of 53 sites in the Western U.S. found an average 8.3% reduction in solar output
on smoky days [25], while another observed sunlight (GHI) reductions of up to 20% in the
region [26]. Long-term trends indicate a 3.5% reduction in PV production in US regions
such as the northern Rocky Mountains, near Alberta [27]. In New England, smoke from
Canadian wildfires caused a 40% drop in solar energy generation after Canadian wildfires
in 2023 [28].

Other international studies corroborate these findings. In Australia, wildfire smoke
reduced solar production by 7% on average during the study period, with hourly peaks
of 27% reduction [29], and another study showed hourly reductions of 20% to 65% [30].
In Spain, smoke caused daily reductions of up to 43% [31]. In West Africa, dust aerosols
led to solar generation decreases of 13% [32], while in Kuwait, GHI on smoky days ranged
between 70–87% of clear-day values [33]. Pollution-related particulate matter, assessed with
the same indicators as wildfire smoke, exhibits similar impacts in Asia [34, 35, 36, 37].

As solar PV generation grows, planning for the impact of wildfire smoke becomes cru-
cial. The reduction in output from wildfire smoke, is exacerbated by the ”wiggle effect”
- rapid fluctuations in PV output caused by particulate matter [38]. These fluctuations
can destabilize the power grid. With increased use of solar energy, grid stability becomes
more vulnerable, as solar power fluctuates more than traditional power plants, which pro-
vide more consistent output [38, 39]. Incorporating aerosol conditions into solar power
forecasts can improve grid forecasting accuracy, and therefore grid stability, as shown by
[40], who found improvement in 65% of stations when including Saharan dust into German
PV forecasts. Additionally, machine learning models combining historical power data with
meteorological parameters (e.g., temperature, solar irradiance, humidity, wind speed, cloud
cover) have been shown to improve forecasting accuracy [41, 42].

The rising frequency and severity of wildfires underscores the importance of understand-
ing how wildfire smoke affects solar power generation. Studies consistently show that smoke,
through particulate matter and aerosols, reduces solar output and can destabilize the power
grid due to fluctuations in power generation. Further understanding of the extent of these
effects will be vital to adapt to future challenges and ensure reliable grid operation. With
Alberta’s focus on renewable energy integration and its considerable solar potential, this
challenge becomes increasingly significant.

2.2 Research objectives and novel contributions

The effects of wildfire smoke and atmospheric aerosols on solar PV power generation have
been studied in regions such as Asia and the United States, but it is essential to expand
this research to regions with diverse climates experiencing significant solar PV growth. Al-
berta provides an ideal case study, given its rapid adoption of solar PV generation and
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wildfire smoke as the primary source of air pollution. Despite its relevance, a comprehen-
sive evaluation of these effects in Alberta, or in Canada more broadly, has not yet been
conducted.

This research uses a larger dataset compared to most previous studies, capturing the
variability in smoke intensity and duration across multiple wildfire seasons. While a dynamic
study has not been conducted, a broader temporal scope allows for insights into the long-
term effects of repeated wildfire events on solar energy production. Additionally, this study
examines a range of solar power sites, those that are operational, under construction, and
proposed, providing a comprehensive analysis of how wildfire smoke affects Alberta’s solar
energy potential. Including both existing and future solar projects offers valuable insights
into the long-term viability of solar power in the province, helping to identify potential
risks to both current and planned investments in solar infrastructure. This scope will allow
for a more nuanced understanding of how wildfire smoke could shape Alberta’s renewable
energy landscape. It will also offer valuable insights into the impact of wildfire smoke on
PV production more broadly, serving as a reference for future studies in other regions.

One of the major contributions of this research is the estimation of potential financial
losses of reduced solar power generation due to wildfire smoke. It will provide stakeholders
- such as policymakers, utility companies, and investors - with data on the economic costs
of these disruptions, supporting decision making regarding the feasibility of large-scale solar
PV plants in regions at high risk of wildfire smoke.

Namely, Alberta’s potential for diverse renewable energy sources, particularly wind
power, offers an opportunity to reassess the province’s renewable energy strategy in light
of our study. Should significant vulnerabilities in solar power be identified due to wildfire
smoke, policymakers may consider prioritizing complementary technologies that are less im-
pacted by atmospheric pollution, thereby boosting Alberta’s energy resilience during smoke
events.

This research contributes to the ongoing discussions on climate change adaptation, with
a particular focus on renewable energy systems. As climate change amplifies the frequency
and intensity of wildfires, understanding these effects is crucial for building reliable energy
infrastructure. The need to integrate real-time smoke data into solar PV forecasting models,
to better manage grid operations and reduce the risk of energy shortages during smoke
events, is highlighted. Ultimately, this study aims to inform renewable energy policies in
Alberta and Canada, while enhancing academic understanding of climate-specific challenges
to renewable energy.

3 Data and Methods

This section introduces datasets and methodologies used in this study, building on the
recent approach presented by Gilletly et al. [25].
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3.1 Datasets

Except for the Innisfail production dataset, all data was sourced from publicly available
resources. The study spans from 2018 to 2023, specifically chosen to encompass recent
wildfire trends in Western Canada, including record-breaking years (2018, 2021, 2023) and
relatively mild years such as 2020 [43]. Data preparation and integration was performed in
Python using an assortment of packages [44, 45, 46, 47, 48, 49, 50, 51, 52].

3.1.1 Station Selection

In this study PM2.5 is used as a proxy for wildfire smoke, consistent with established research
practices, as described in the previous sections. PM2.5 is monitored by the Government
of Alberta as part of the Canadian Ambient Air Quality Standards (CAAQS). A dataset
detailing the geographic coordinates and monitoring periods of PM2.5 was downloaded
from the Alberta Air Data Warehouse [53]. Solar site candidates were identified using the
Alberta Major Projects database, containing infrastructure projects with budgets exceeding
$5 million Canadian dollars [54]. At the time of download, there were 41 PM2.5 station
candidates and 91 solar site candidates.

Geographical cross-referencing determined the inclusion of sites in the study. Solar sites
within a 50 km radius of a PM2.5 sensor were included and PM2.5 monitoring stations
closest to these solar sites were selected. A 50 km radius ensures reasonably accurate values
at solar sites and is consistent with the similar studies [25]. One PM2.5 station, Red Deer
Riverside, was removed due to large amounts of missing data and its proximity, 9.4 km, to
another station that could provide data for the same region. This process identified 28 solar
sites and 12 PM2.5 stations, with an average distance of 23.87 km between pairs. Most solar
sites are in Southern Alberta, reflecting its high solar potential, with a gap in Southeastern
Alberta due to a lack of nearby PM2.5 stations that met the necessary criteria. See Figure
2 for the site map.

3.1.2 Particulate Matter PM2.5 Data

Hourly PM2.5 (µg/m
3) data was obtained from the Alberta Air Quality Data Warehouse for

all stations included in the study [55]. Only “Good Quality” data, without flagged invalid
entries, was downloaded, eliminating the need for outlier treatment [55]. Data preparation
involved addressing duplicates and missing values. In cases where multiple PM2.5 values
existed for a given hour, the average was calculated. Each station had a number of missing
values, which were filled using a weighted average method, with nearby stations assigned
higher weights based on their proximity. This method relied on the synchronized trend in
PM2.5 between stations, demonstrated in Figure 3, to contextually fill the missing values.

3.1.3 Solar Generation Data

Due to the unavailability of historical production data, solar PV power generation was sim-
ulated at all 28 sites, differing from Gilletly et al.’s [25] methodology. The use of simulated
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Figure 2: Map of solar PV stations & PM2.5 monitoring stations.
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Figure 3: Monthly average PM2.5 at each monitoring station.

data is a recognized approach in the literature [32, 17] and offers several advantages, in-
cluding a larger dataset that incorporates sites under construction or in the proposal phase,
and reduced data preparation requirements, as real-world data often includes downtime and
recording errors.

The simulation used the publicly available System Advisory Model (SAM) software,
specifically the PVWatts Model, which required environmental (weather) parameters and
system design data for each site [56]. Weather data, pre-formatted for SAM, was obtained
from the National Aeronautics and Space Administration (NASA) Langley Research Center
(LaRC) Prediction of Worldwide Energy Resources (POWER) Project, using the Hourly
API which provides pre-formatted satellite data for the renewable energy sector [57]. The
data corresponds to the nearest satellite grid cell for each site. System design inputs,
summarized in Table A.1. in the Appendix A, were gathered manually from the Alberta
Utilities Commission application portal [58]. After assembling the necessary inputs, hourly
solar production in kW was simulated.

To evaluate the precision of SAM’s simulations, actual production data for the Innisfail
site, provided by Elemental Energy, were used, spanning from July 2020 to December 2023
[59]. As seen in Figure 4, the simulation aligns reasonably well with the data observed
during the fire season (March 1 to October 31) [60]. Despite the larger differences outside
this period, the data remains reliable for drawing conclusions during the fire season. Pos-
sible reasons for production differences include site downtime, imperfect satellite weather
observations or snow on solar panels.

3.1.4 Electricity Price Data

To estimate the financial impact of solar PV power generation losses due to smoke, monthly
average pool price data from AESO (Alberta Energy Systems Operator), was converted from
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Figure 4: Comparison of actual and simulated production at Innisfail solar site [59].

Canadian dollars per MWh to cents per kWh, to match the hourly format of the dataset
[61]. The pool price indicates the average price at which electricity is bought and sold on the
market [62]. This data was then adjusted for inflation to December 2023 Canadian dollars
using the National Power Selling Price Index from Statistics Canada [63]. The adjusted
data will be used to calculate the monetary losses from reduced solar power production
during wildfire smoke events.

3.1.5 Final dataset aggregation

PM2.5 and SAM simulated production data were merged by matching each solar station
production entry with the corresponding PM2.5 value of the nearest station at the same
time stamp. A separate download of hourly weather data, including parameters selected
for the model - GHI, temperature, humidity, wind speed, and precipitation - was obtained
from POWER Project via the Hourly API [57]. These parameters aligned with those used
by Gilletly et al. [25], with the addition of humidity as an additional predictive variable
[21]. The clearness index was initially considered but excluded on the recommendation of
Gilletly et al. [25], and attempts to use Aerosol Optical Depth (AOD) were also abandoned
due to data quality issues.

Before integration, the weather data was adjusted to the appropriate time zone, and data
from February 29 were excluded from leap years, as the SAM simulation does not provide
values for this date. Weather data was then combined with PM2.5 and production datasets.
The resulting dataset contained 1,471,652 hourly data points. Figure 5 demonstrates the
data aggregation process.

A total of 39,983 (2.7%) rows were removed due to missing power generation despite
non-zero GHI values, suggesting potential simulation anomalies, leaving 1,434,669 hourly
data points for final analysis. To account for differences in equipment and production capac-
ities between sites, Min-Max normalization [25] was applied, scaling each site’s production
between 0 and 1 relative to its maximum observed output during the analysis period. This
normalization ensured comparability between sites.
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Figure 5: Data aggregation process.

3.2 The predictive model

We selected and developed a predictive machine learning model to forecast solar PV power
production in Alberta, using it to isolate the impact of smoke on model predictions. Python
was used for implementation, utilizing previously listed packages.

3.2.1 Model Selection

The literature highlights a strong preference for artificial intelligence methods in solar fore-
casting [64], with ensemble techniques, such as Random Forest Regression (RFR), emerging
as a robust solution able to capture complex relationships in the data [65]. Chahboun et al.
[66] found RFR superior to Multiple Linear Regression (MLR) and Support Vector Regres-
sion (SVR), while Torres-Barran et al. [67] emphasized the effectiveness of gradient-based
ensemble methods like XGBoost. Das et al. [68] reviewed PV power prediction models, not-
ing that while Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs)
perform well, ANN’s high computational cost and risk of overfitting warrant caution. In
some instances, RFR has outperformed ANNs in solar PV power prediction [41]. Hence,
RFR, SVR and XGB are considered in our model selection process.
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Figure 6: Model feature importance.

3.2.2 Model Training

In initial model training, the first ≈ 83% of the dataset (2018-2022) was used for training,
with the remaining 17% (2023) reserved for testing. This time-based split ensures balanced
training data and prevents potential bias that could arise from only including a portion of
the year in model training. The performance of the model was evaluated using Root Mean
Squared Error (RMSE) and the coefficient of determination (R2), offering an understanding
of predictive accuracy and ability to capture variance.

The baseline models for RFR, SVR, and XGB were compared. SVR was excluded
due to impractical training speeds for large datasets, as Scikit-learn’s SVR is designed for
datasets up to 10,000 rows [50]. Among the remaining methods, RFR and XGB performed
comparably, and we chose to use RFR for its established effectiveness and basis in similar
studies [25]. RFR produced reliable predictions, aligning well with the objectives of this
study, with our emphasis on application rather than model innovation.

Randomized Search Cross Validation [50] was employed for RFR hyperparameter op-
timization, sampling from a defined search space to reduce computational costs. Search
spaces were adapted from Torres-Barran et al. [69] from similar optimization tasks, with
the best results used to finalize the model parameters. The model’s ability to generalize to
unseen locations was evaluated using a leave-one-group-out strategy at the site level, as de-
scribed by [25]. In each iteration, one site was excluded as the test set, while the remaining
sites were used for training, assessing predictive accuracy to determine how well the model
would adapt to new sites not seen in the training process. This process was repeated for all
28 sites, resulting in an average RMSE of 0.0764 and an average R2 of 0.9421, indicating
that the model generalized well to new location data.

Following a satisfactory assessment of the model’s predictive accuracy, the model was
trained on the full dataset. The feature importance, as depicted in Figure 6, highlights the
contribution of the individual variables.
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3.3 Isolating Wildfire Smoke Impacts

To assess the impact of wildfire smoke on solar PV power production, the original dataset
was filtered for periods with high observed PM2.5 levels, corresponding to the red (severe:
PM2.5 > 27) and orange (moderate: PM2.5 ⩾ 20) thresholds in the Canadian Ambient Air
Quality Standards [70], and positive GHI values, indicating theoretical production hours.
The model was used to predict power generation during these smoky periods. Subsequently,
the monthly mean PM2.5 value under ”clear” conditions (PM2.5 ⩽ 10) was calculated, and
high observed PM2.5 values in the smoke dataset were replaced with this clear monthly
value, creating a synthetic dataset without smoke. Predictions were then made on the syn-
thetic dataset, holding all other factors constant, to isolate the effect of PM2.5 on predicted
power output.

This analysis also extends to the evaluation of the financial implications of wildfire smoke
on solar PV production within Alberta’s deregulated electricity market. In this market,
electricity is traded based on the pool price, which represents the cost per megawatt-hour
paid to generators, as previously described [62]. Although some producers operate under
private power purchase agreements, this study assumes that all solar PV producers sell at
the pool price to estimate financial losses. Monthly average hourly pool prices, adjusted
for inflation to December 2023 values, were multiplied by the predicted hourly power losses
and aggregated over the analysis period to quantify financial impacts in Canadian dollars.

4 Results and discussion

4.1 Exploratory Analysis

Figure 7 displays weekly average levels of PM2.5 across monitoring stations during the
study period, highlighting significant increases during fire season. The most severe levels
were observed in 2023, 2018 and 2021, with occasional peaks in 2019. In particular, weekly
average values of PM2.5 in Alberta exceeded levels of orange and red exclusively during
the fire season, highlighting wildfire smoke as the main source of severe PM2.5 pollution in
the province. Among the study years, 2023 exhibited the highest sustained smoke levels
throughout the province, with an average PM2.5 concentration of 13.93 µg/m³ during the
fire season. 2021 and 2018 also had notable concentrations of PM2.5, with the 2020 fire
season having the lowest concentration at 4.96 µg/m³.

An analysis of simulated solar generation data reveals that days characterized by ele-
vated PM2.5 levels rarely reach the high end of the production spectrum, as illustrated in
Figure 8. This indicates a negative correlation between high PM2.5 levels and solar power
production. Solar power generation exhibits a clear seasonal pattern, with higher output in
the summer months, coinciding with the fire season. The alignment of smoke periods and
peak production times presents potential challenges for solar power production in Alberta.
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Figure 7: Weekly average PM2.5 across all studied monitoring stations.

Figure 8: Daily sum of solar power produced (kW), sized by daily average PM2.5.
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Figure 9: Percent losses at varying levels of PM2.5.

4.2 Isolated wildfire impacts and financial implications

During periods of moderate to severe wildfire smoke over the duration of the study, (PM2.5 ⩾
20), solar power generation in Alberta experienced a mean reduction of 3.09%, increasing
to 3.91% under severe conditions (PM2.5 > 27). Throughout the six fire seasons, the cumu-
lative impact led to a 0.19% average generation loss, equating to an estimated financial loss
of $4,514,160. Analyzing power losses at 7 µg/m³ PM2.5 intervals (n ⩾ 1500; Figure 9) re-
vealed a consistent trend: higher smoke levels corresponded to greater losses in production,
in fact, severe smoke (PM2.5 > 27) accounted for 77.66% ($3,505,751) of all financial losses
in the study, demonstrated in a yearly breakdown seen in Figure 10. With consensus in the
scientific community indicating a worsening Canadian fire regime, these power reductions
are expected to escalate as severe smoke levels occur within the province more frequently,
highlighting the growing economic and operational risks of worsening wildfire smoke.

Solar power losses were most pronounced in 2021 and 2023, with 2023 experiencing the
highest total financial impact at $1.8 million, due to higher electricity prices, despite greater
MW losses in 2021 (Figure 10). The timing of wildfire smoke events seems to play a crucial
role: in 2021, smoke was concentrated in July, when longer daylight hours and higher solar
irradiance maximize PV generation potential. In contrast, 2023’s smoke events occurred
primarily in May, a period with less sunlight and higher precipitation potential (Figure 11).
This seasonal difference likely explains why the largest monthly financial loss occurred in
July 2021 ($1.2 million), seen in Figure 12. In terms of relative power reductions over the
fire season, 2021 saw the greatest impact (4.67%), followed by 2018 (3.69%). A summary
of yearly results can be found in Table B.2. in the Appendix B. Further research on PV
seasonality and its interaction with wildfire smoke could improve understanding of how the
timing and duration of smoke events affect solar power production.

When examining production losses by location, we found that sites in Southern Alberta
experienced greater impacts, as shown in Figure 13. These sites demonstrate larger reduc-
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Figure 10: Yearly losses attributable to wildfire smoke by PM2.5 rating.

Figure 11: Daily average PM2.5 levels by year.

Figure 12: Largest monthly losses attributable to wildfire smoke by PM2.5 rating.
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tions in normalized production and financial losses. Possible explanations include elevated
levels of smoke present in Southern Alberta during the study period, or the region’s higher
solar PV potential, which amplifies production losses.

Over the six-year study, wildfire smoke led to site-wide power losses ranging from 6.29%
(Innisfail) to 1.13% (Sollair), as summarized in Table B.3 in Appendix B. Variations in nor-
malized losses may be attributed to differences in smoke exposure, solar resource potential,
panel technology, and localized atmospheric effects. Larger facilities experienced greater
financial losses, with Georgetown (230 MW) exhibiting the most significant decline in both
monetary terms and normalized power output. Figure 14 illustrates a dramatic production
decline at Georgetown in May 2023 as PM2.5 levels exceeded 300 µg/m³. Georgetown is
currently in the proposal stage. Given the observed effects, it may be wise to consider the
potential impacts of smoke on this site and how they can be best mitigated.

Several stations highly susceptible to financial losses are in the proposal or construction
stages (Figure 15), reflecting Alberta’s growing large-scale solar capacity. Earlier projects
were smaller, often pilot initiatives, while newer, larger facilities are more exposed to fi-
nancial losses. As project size increases, so does the potential for revenue losses due to
smoke-related power reductions. Future planning should account for these risks through
improved forecasting, adaptive technologies, and site-specific mitigation strategies.

5 Conclusions

This study quantifies the impact of wildfire smoke on solar photovoltaic (PV) power gen-
eration in Alberta, revealing a consistent reduction in energy output during smoke events,
aligning with findings from other regions. Given the intensifying wildfire regime driven by
climate change and Alberta’s growing reliance on renewable energy, these findings under-
score the need to integrate wildfire-related risks into energy planning and policy.

From our results, moderate to severe wildfire smoke (PM2.5 ⩾ 20) resulted in average
power reductions of 3.09% with total financial losses reaching approximately $4.5 million.
The most severe impacts were observed during the 2018, 2021 and 2023 fire seasons - record
setting years - where PM2.5 spikes curtailed solar output. Severe smoke episodes (PM2.5 >
27) represented 77.7% of financial losses, with an average decline of 3.91%, underscoring
their disproportionate impact. Losses consistently increased with the severity of smoke
levels, highlighting the correlation between higher PM2.5 concentrations and reduced solar
production. As wildfire intensity and frequency continue to rise, policymakers and industry
must address the risk of smoke disrupting solar energy in Alberta - even from fires thousands
of kilometers away.

The finding that 2021 incurred the most significant losses in production, despite having
lower average PM2.5 levels than 2023, suggests that the timing of smoke events, alongside
seasonal and daily variations, plays a critical role in solar PV reductions due to wildfire
smoke. While this study focuses on the general relationship between wildfire smoke, PV
production losses, and financial losses, the temporal-spatial dependencies of smoke events
warrant further investigation. The timing of smoke events could be as impactful as smoke
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Figure 13: Differences in solar power production, sized by normalized losses, coloured by
financial losses.
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Figure 14: Reduction in solar power production at Georgetown in May 2023.

Figure 15: Total production loss attributable to smoke, by project stage.
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intensity in driving solar PV losses. The alignment between fire season and peak solar
production periods further complicates energy planning and grid stability, highlighting the
need to better understand how smoke and additional environmental factors interact to
influence solar PV performance.

Although normalized solar PV production losses were consistent across most stations,
the pronounced impact in Southern Alberta suggests regional sensitivity to smoke, calling
for further investigation into atmospheric patterns and transport mechanisms. Significant
losses at larger production sites and those under construction reveal the vulnerability of
major solar facilities to wildfire smoke, underscoring the urgency of developing strategies to
bolster grid stability and strengthen the resilience of key infrastructure for consistent power
generation province-wide.

Given that this study encompasses completed, proposed and under construction projects,
its purpose lies in assessing the possible impact of smoke on Alberta’s solar PV power po-
tential, rather than providing an evaluation of actual historical events. If the study had
exclusively considered completed projects over the period studied, the effects in terms of
power production losses in MW and financial implications would likely be different, as many
of the largest contributing projects are not complete. Furthermore, several of Alberta’s
largest solar projects, including the Travers Solar site (465 MW), the largest in Canada,
were excluded from this study due to their lack of proximity to a PM2.5 station that met the
established criteria [71]. This omission will also affect results province-wide. Nonetheless,
considering the overall similarities among sites in terms of normalized and percentage-wise
production loss, the losses would likely be similar when compared in relative terms.

The use of satellite environmental data rather than onsite measurements, offsite PM2.5

values, and simulated solar PV production data, will also have an impact on the precision
of the results. However, given the comparative analysis conducted between the simulated
and actual data for Innisfail, this is not a major concern. Additionally, this study does
not consider the effects of particulate matter deposition on solar panels, which have also
been shown to contribute to significant reductions in production [35]. This may lead to
an underestimation of the reductions in solar PV power generation attributed to wildfire
smoke demonstrated in our study.

Despite these limitations, this study provides a functional estimate of the potential
impacts of wildfire smoke on solar power generation in Alberta. While further refinement
and exploration are needed to address identified constraints, the presented findings serve
as a critical starting point to understand the interaction between wildfire smoke events
and solar energy production in the province, as well as contribute to the overall body of
knowledge on how wildfire smoke affects solar PV power generation.

This study underscores the lasting effects of environmental disruptions on renewable
energy. It calls for the development of comprehensive energy planning strategies that pri-
oritize resilience, enabling solar PV systems and the provincial electricity grid to withstand
future challenges and continue to thrive in an increasingly volatile climate.
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6 Code and data availability

With the exception of actual Innisfail production data, provided by Elemental Energy, all
data used in this study was obtained from public sources. The assembled data, random
forest regression model and sample Python code used to obtain results will be made public
upon publication.

Acknowledgements

The authors thank Elemental Energy for providing the data for the Innisfail site. Special
thanks to Oksana Treacy at SkyFire Energy for her assistance in liaising with Elemental En-
ergy to procure the data, as well as for proofreading and providing valuable advice. The first
author also appreciates the support from Accelerating Community Energy Transformations
(ACET) at the University of Victoria for allowing time to complete this article.

The second author acknowledges financial support from FCT – Fundação para a Ciência
e Tecnologia (Portugal), with national funding through research grants CEMAPRE/REM
UIDB/05069/2020 and EXPL/ EGE-ECO/ 0886/ 2021.

7 CRediT authorship contribution statement

Samantha M. Treacy: Conceptualization, Methodology, Software, Formal Analysis, Data
Curation, Writing - Original Draft, Writing - Review & Editing, Visualization, Project
Administration. Alexandra B. Moura: Writing - Original Draft, Writing - Review &
Editing, Supervision, Project Administration

8 Declaration of generative AI and AI-assisted technologies
in the writing process

During the preparation of this work, the authors utilized ChatGPT to improve readability
and language. Following the use of this AI-assisted tool, the authors carefully reviewed and
edited the content as necessary and assume full responsibility for the final version of the
publication.

A System Advisory Model Simulation Requirements

21



Variable name Description

System nameplate capacity, kWdc The maximum rated electrical output capacity of the solar
power system under standard test conditions, measured in
kilowatts direct current (kWdc).

Module type The categorization of solar panels into standard, premium,
or thin-film modules, representing different technologies and
efficiency levels.

DC to AC ratio The ratio of the direct current (DC) power generated by the
solar panels to the alternating current (AC) power delivered
to the electrical grid.

Inverter efficiency The efficiency of the inverter in converting DC power gen-
erated by the solar panels into usable AC power for the
electrical grid.

Array type The configuration of the solar panel array, including options
such as fixed open rack, fixed roof mount, 1-axis tracking,
1-axis backtracking, and 2-axis.

Tilt, degrees The angle at which the solar panels are tilted from the hor-
izontal plane, measured in degrees, influencing exposure to
sunlight and energy production.

Azimuth, degrees The compass direction the solar panels face, measured in
degrees, indicating the orientation of the panels towards the
sun for optimal energy capture.

Ground coverage ratio (GCR) The ratio of the total surface area covered by solar panels
to the total ground area, influencing power density and land
utilization. In some cases this information was not available,
and a value of 0.3 is used, which is the default value in the
software, and also that recommended by an industry expert.

Bifaciality A binary variable indicating whether the solar panels are
bifacial, capable of capturing sunlight from both the front
and rear sides. Options include ”Yes” or ”No.”

List of environmental inputs for SAM latitude, longitude, time zone, elevation, year, month, day,
hour, global horizontal irradiance, beam normal irradiance,
diffuse horizontal irradiance, ambient dry bulb tempera-
ture, wet bulb temperature, dew point temperature, wind
speed, wind direction, relative humidity, atmospheric pres-
sure, snow depth, ground reflectance(albedo), and aerosol
optical depth.

Table 1: Required system design inputs for SAM simulation. All descriptions sourced from
SAM software documentation [56].
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B Results Summary

Year 2018 2019 2020 2021 2022 2023 Entire Study

Average PM2.5 (µg/m³) 10.23 5.86 4.96 8.55 5.93 13.93 8.24

Observations PM2.5 ⩾ 20 9,353 2,371 1,715 7,846 3,010 13,813 38,108

Observations PM2.5 > 27 6,482 1,250 748 5,510 1,319 8,857 24,166

Mean % production loss (PM2.5 ⩾ 20) 3.69% 2.69% 2.01% 4.67% 0.92% 2.47% 3.09%

Mean % production loss (PM2.5 > 27) 4.24% 4.30% 2.93% 5.45% 1.23% 3.08% 3.91%

Mean % production loss over fire season (PM2.5 ⩾ 20) 0.31% 0.06% 0.02% 0.37% 0.03% 0.33% 0.19%

Mean % production loss over fire season (PM2.5 > 27) 0.26% 0.05% 0.01% 0.31% 0.02% 0.26% 0.15%

Total power loss (MW) (PM2.5 ⩾ 20) 10,163 1,798 804 11,731 913 10,912 36,320

Total power loss (MW) (PM2.5 > 27) 8,442 1,422 388 9,646 517 8,327 28,741

Proportion of power losses (PM2.5 > 27) 83.06% 79.09% 48.21% 82.23% 56.58% 76.31% 79.13%

Hypothetical $ losses (PM2.5 ⩾ 20) $829,559 $143,461 $35,816 $1,536,478 $166,003 $1,802,845 $4,514,160
Hypothetical $ losses (PM2.5 > 27) $693,127 $116,133 $18,496 $1,233,991 $100,059 $1,343,943 $3,505,751
Proportion of hypothetical $ losses (PM2.5 > 27) 83.55% 80.95% 51.64% 80.31% 60.28% 74.55% 77.66%

Table 2: Impacts of wildfire smoke on solar energy production.
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Location Stage Mean % production loss

Innisfail Completed 6.29%

Joffre Completed 5.19%

Georgetown Proposed 4.99%

Saddlebrook Under Construction 4.24%

Caroline Proposed 4.09%

Vilna Proposed 3.85%

Barlow Completed 3.75%

Deerfoot Completed 3.74%

Creekside Proposed 3.64%

Nova Proposed 3.58%

Winnifred Proposed 3.55%

Aura Peace Butte Proposed 3.35%

Strathmore Completed 3.16%

Moon Lake Proposed 2.54%

Prominence Proposed 2.42%

Vulcan Proposed 2.31%

Monarch Completed 2.25%

Saamis Proposed 2.13%

Scotford Refinery Completed 2.07%

Dunmore Under Construction 2.07%

Saamis1 Proposed 2.06%

Chappice Lake Completed 2.06%

Rocktree Proposed 2.03%

Suffield Completed 1.93%

Kneehill Completed 1.80%

Kisikaw Pisim Completed 1.52%

Airport City Proposed 1.41%

Sollair Completed 1.13%

Table 3: Mean % production loss at site locations during moderate smoke conditions
(PM2.5 ⩾ 20).
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