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A deep learning test of the martingale

difference hypothesis

João A. Bastos∗

Lisbon School of Economics & Management (ISEG)

Universidade de Lisboa. Portugal

Abstract

A deep learning binary classifier is proposed to test if asset returns follow martin-

gale difference sequences. The Neyman-Pearson classification paradigm is applied

to control the type I error of the test. In Monte Carlo simulations, I find that

this approach has better power properties than variance ratio and portmanteau

tests against several alternative processes. I apply this procedure to a large set

of exchange rate returns and find that it detects several potential deviations from

the martingale difference hypothesis that the conventional statistical tests fail to

capture.

Keywords: Martingale difference hypothesis; Convolutional network; Variance ratio test; Port-

manteau test; Exchange rates

1 Introduction

The martingale difference hypothesis posits that variations in asset prices are mean-

independent at all leads and lags or, equivalently, that they follow a martingale difference

sequence. A weaker version asserts that these variations are just uncorrelated at all leads

and lags. If this hypothesis holds, the forecasts for future asset prices that minimize the

expected squared error are the last observed price. The most straightforward strategy to

test this hypothesis is to look for statistically significant autocorrelations in the returns.

For instance, we can detect departures from zero in either direction using a portmanteau

test based on the sum of the squared autocorrelations up to a given lag (e.g., Ljung

and Box, 1978). A test statistic with better power properties against several alternative

∗E-mail address: jbastos@iseg.ulisboa.pt
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hypotheses is the variance ratio, the asymptotic properties of which were first derived

by Lo and MacKinlay (1988). This test is based on the fact that under the martingale

difference hypothesis the variance of the k-period returns must be k times the variance

of the one-period returns. Since the foundational work of Lo and MacKinlay (1988),

the variance ratio test emerged as a valuable tool for testing whether asset returns are

serially uncorrelated, and several extensions of the original statistic were proposed in

the literature, such as the multiple variance ratio test of Chow and Denning (1993), the

automatic variance ratio of Choi (1999), the ranks and signs test of Wright (2001), the

wild bootstrap test of Kim (2006), and the panel data test of Kim and Shamsuddin

(2015). Tests based on nonlinear measures of dependence were also proposed by several

authors, such as the Dominguez and Lobato (2003) test based on the Cramer-von Mises

and Kolmogorov-Smirnov statistics, and the generalized spectral test of Escanciano and

Velasco (2006). A comprehensive review of tests for the martingale difference hypothesis

can be found in Escanciano and Lobato (2009a).

Judging whether a return series follows a martingale difference sequence is a binary

decision problem. An alternative to statistical hypothesis tests to handle this problem is

machine learning classification – a tool for assigning new observations to one of several

categories or classes, using other observations with known class labels. In particular, a

binary classifier is a statistical model that categorizes new observations into two classes,

usually labeled as 0 and 1. This classifier can generate two types of errors: classify a class

0 observation as class 1, producing a type I error; or classify a class 1 observation as class

0, leading to a type II error. Classification algorithms are usually trained to minimize the

expected number of misclassified observations, thereby giving equal importance to type I

and II errors. This contrasts with the Neyman-Pearson framework of hypothesis testing

in which these errors have different priorities. In this framework, a level of significance

α (the size of the test) is imposed on the probability of a type I error. Then, one looks

for a test that satisfies this constraint while minimizing the probability of type II errors,

or equivalently, maximizing the probability of detecting class 1 events (the power of the

test).

In this paper, I propose testing the martingale difference hypothesis using a binary

classifier. Because this hypothesis is a cornerstone of the efficient-market hypothesis in

financial economics (Fama, 1970), I want to be on the conservative side with respect

to rejecting it. Therefore, I use the Neyman-Pearson approach to classification (Scott

and Nowak, 2005; Tong and Rigollet, 2011; Tong, 2013; Zhao et al, 2016), which, as the

name implies, is related to the conventional Neyman-Pearson framework for statistical

hypothesis testing. Neyman-Pearson classification allows us to incorporate in classifi-

cation models asymmetric type I and type II errors and contain the population type I
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errors just below a nominal test size α with high probability. In particular, I use the

‘umbrella’ approach of Tong et al (2018) that provides a model-agnostic implementation

of the Neyman-Pearson paradigm. The classification model is a convolutional neural

network or convnet. This is a specialized deep neural network originally developed for

image recognition. However, convnets can process any data with a grid-like topology

and therefore can be ‘downgraded’ to process temporal sequences sampled at regular in-

tervals. Because they learn local, translation equivariant features in the data, they are

highly efficient on perceptual problems.

Using Monte Carlo simulations, I benchmark the performance of this procedure against

the automatic variance ratio (AVR) test of Kim (2009), which is based on wild bootstrap-

ping the AVR statistic of Choi (1999), and against the portmanteau test with automatic

lag selection (AQ) of Escanciano and Lobato (2009b). Charles et al. (2011) find that

these tests have excellent power properties against a wide range of linear and nonlinear

processes, with no size distortions. Also, they do not require the somewhat arbitrary

selection of the k-period used for calculating returns. I find that a convnet carefully de-

signed to detect deviations from the martingale difference hypothesis has greater power

than the AVR and AQ tests against several alternatives. An empirical application to ex-

change rates shows that the deep learning approach detects potential deviations from the

martingale difference hypothesis that the statistical tests fail to capture. Therefore, this

model is a more efficient approach to learn patterns in financial returns than conventional

statistical tests. While convnets may be regarded as ‘black-box’ models, we can easily

visualize how they respond to different return series and understand which patterns have

been learned.

In the following section, I provide an overview of the classifier designed to test the

martingale difference hypothesis in financial returns. I present the Neyman-Pearson clas-

sification framework and the architecture of the convolutional neural network. Section

3 shows the results of the Monte Carlo simulations. Section 4 contains an empirical

application to two sets of exchange rates. Section 5 provides the conclusions.

2 A classifier for testing the martingale difference

hypothesis

2.1 Neyman-Pearson classification

Consider a set of observations described by a d-dimensional vector of regressors X ∈
X ⊂ Rd. These observations belong to two classes, labeled as Y ∈ {0, 1}. A binary

classifier is a data-dependent mapping ϕ : X → {0, 1} that assigns an observation to
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one of these classes. Classification algorithms typically produce a function f(X) that

provides a numerical value called the score. The higher the value of the score for a given

observation, the higher is the likelihood of belonging to the class labeled as 1. Therefore,

a binary classifier is obtained by applying a cutoff c ∈ R on the scores:

ϕ(X) = I(f(X) ≥ c), (1)

where I(·) is the indicator function.

A common approach to measure performance on a classification task is in terms of

the expected error rate

R(ϕ) = E [I (ϕ(X) ̸= Y )] = P [I (ϕ(X) ̸= Y )] , (2)

This error rate can be decomposed as

R(ϕ) = P (Y = 0)R0(ϕ) + P (Y = 1)R1(ϕ), (3)

where

R0(ϕ) =P [I (ϕ(X) ̸= Y ) |Y = 0] is the type I error probability, and

R1(ϕ) =P [I (ϕ(X) ̸= Y ) |Y = 1] is the type II error probability. (4)

These probabilities are not observable and must be estimated from the data. In classifi-

cation problems one typically tries to find the classifier that minimizes the overall error

due to misclassified observations,

ϕ∗ = argmin
ϕ

R(ϕ), (5)

and, therefore, the same importance is given to type I and type II errors. However, in

many domains the misclassification errors made by a classifier are not equally important.

For instance, in credit risk management it is more costly for a bank to provide credit to a

client that defaults (false negative), than to deny credit to a client that would not default

(false positive).

Here, we should also be on the conservative side with respect to rejecting the mar-

tingale difference hypothesis since it corresponds to the null hypothesis in the statistical

hypothesis tests. If the martingale difference hypothesis is labeled as 0, we seek a classifier

that constrains the probability of type I errors below the significance level α with high

confidence, while trying to minimize the probability of type II errors. To achieve this

goal we use Neyman-Pearson classification (Scott and Nowak, 2005; Tong and Rigollet,

2011; Tong, 2013; Zhao et al, 2016). This approach seeks a classifier that satisfies as well

as possible the problem

ϕ∗
NP = argmin

ϕ:R0(ϕ)<α

R1(ϕ). (6)
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To implement a Neyman-Pearson classifier we could find the model that best discriminates

the two classes, and choose the smallest cutoff value cα that results in an empirical type

I error rate not greater than α in an independent validation sample,

cα = inf

{
c :

∑n
i=1 I(f(xi) ≥ c, yi = 0)∑n

i=1 I(yi = 0)
≤ α

}
, (7)

where n is the size of this sample. The classification rule would then be

ϕα(X) = I (f(X) ≥ cα) . (8)

However, Tong et al (2018) showed that this approach results in about half of the clas-

sifiers having type I error rates above α. Then, they propose a model-agnostic approach

to control the type I error under α with high probability. This approach can be applied to

any classification model that provides numerical scores. The idea is to choose the smallest

threshold on the classification scores such that the probability that the population type

I error rate is larger than α is smaller than a given tolerance level δ.

Suppose that we train a classification algorithm and obtain the scoring function f(X).

Furthermore, suppose that we have an independent validation sample of size n containing

observations belonging to the class labeled as 0. Applying f(·) to these observations we

obtain a set of n scores, Ŷ1, . . . , Ŷn. Let Ŷ(k) denote the kth order statistic of the set

{Ŷi}ni=1, and let ϕk(X) denote the classifier

ϕk(X) = I
(
f(X) ≥ Ŷ(k)

)
. (9)

Tong et al (2018) show that the population type I error rate of ϕk(X), R0(ϕk), satisfies

Pr(R0(ϕk) > α) ≤ ν(k) :=
n∑

j=k

(
n

j

)
(1− α)jαn−j, (10)

where ν(k) is the ‘violation rate’. Note that as k decreases or, equivalently, the thresh-

old value Ŷ(k) decreases the violation rate ν(k) increases. To obtain a Neyman-Pearson

classifier we select the smallest value of k than gives a violation rate within the chosen

tolerance level,

k∗ = min {k ∈ {1, . . . , n} : ν(k) ≤ δ} . (11)

The critical value of the test is Ŷ(k∗).

2.2 A convnet for testing the martingale difference hypothesis

The binary classifier is a convolutional neural network or convnet (LeCun, 1989). To con-

serve space only the most relevant ideas of convolutional neural networks are provided
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here.1 Figure 1 shows a diagram of a convnet architecture for testing the martingale dif-

ference hypothesis. Like many deep learning architectures, a convnet has a layered struc-

ture where information flows through consecutive layers from the inputs to the outputs.

Because we simply want to discriminate two types of stochastic processes – martingale

difference sequences (MDS) from models with serial dependence – the convnet has just a

single output. If we encode the MDS as 0 and the models with serial dependence as 1, a

well-trained network will provide an output value close to 1 if the time series presented

at its input has serial dependence, and a value close to 0 otherwise. So far, a convnet is

not very different from the binary choice models used in applied econometrics.

In principle, we could feed the binary choice model with the raw values of the time

series. However, this does not work well in practice – a better approach would be to feed

the model with a low dimensional set of features. For instance, these features could be

obtained from the distributional properties of the returns, short-term serial dependence,

conditional volatility, and so on (see, e.g. Bastos and Caiado, 2021). However, instead of

preprocessing the data to derive specific features, we can use a convnet. The convnet takes

the raw values of the time series and automatically “learns” how to extract meaningful

features, better predicting the class to which a time series belongs.

Figure 1: Scheme of a convolutional neural network for testing the martingale difference

hypothesis.

The box at the bottom is called the ‘convolutional layer’ – the perceptual component

1The reader may find an authoritative exposition of convolutional neural networks in Goodfellow et

al. (2016).
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of the model. A convnet for image recognition typically has several convolutional layers

stacked on top of each other, with the layers closer to the output learning increasingly

abstract patterns in the image. Here, a single convolutional layer is sufficient, given

the absence of pattern hierarchies and the low signal-to-noise ratio in financial returns.

The convolutional layer consists of several sublayers called ‘feature maps’. Each feature

map learns a different translation equivariant pattern in the time series, such as low order

autocorrelations, nonlinear dependence, and long memory. Figure 1 shows a convolutional

layer with three response maps, but this number is typically larger depending on the

number of learnable patterns in the data.

Each feature map is composed of ‘units’, represented by dark circles in Figure 1. Each

unit is connected to the values of the input data that are covered by its ‘receptive field’.

In image recognition, the size of the two-dimensional receptive fields is typically small,

say 3 × 3 pixels. For analyzing asset returns, the size of the one-dimensional receptive

field should be large enough to detect the presence of long-range serial dependence. I

use receptive fields of size 12, corresponding to 3 months for weekly returns or 1 year for

monthly returns. Each unit computes the result of applying an ‘activation function’ g(·)
to a weighted sum of the inputs covered by its receptive field. The weights define the

strength of the connections. The activation function used here is the rectified linear unit

(Glorot et al, 2011) or ReLU, g(z) = max(0, z).

Because within a given feature map the weights of the linear combinations are con-

strained to be equal across all units, a pattern learned at a certain position of the return

series may be recognized at a different position. On top of the convolutional layer sits

a ‘dense layer’. Each unit in the dense layer is connected to all units in the convolution

layer (these connections are not represented in Figure 1). The task of the convolutional

layer is to recognize patterns in the data to be processed by the dense layer. The output

unit computes a linear combination of the outputs from the units in the dense layer and

applies a logistic function to it, yielding an output value bounded to (0,1) which is the

convnet score.

The convnet learns using the backpropagation algorithm (Rumelhart et al, 1986).

First, the network weights are initialized using a random initialization scheme (Glorot

and Bengio, 2010). Then, a batch of data randomly drawn from the training dataset is

passed through the layers. After processing this batch, the convnet calculates the value

of a ‘cost function’ based on how far the scores are from 0, if the returns are martingale

difference sequences, or from 1, if the returns have serial dependence. Then, the network

weights are adjusted to minimize the cost function using a gradient descent algorithm

with adaptive learning rate (Kingma and Ba, 2015). This process is repeated for different

batches of data, until all observations in the training dataset are used. Finally, the

7



training process executes many iterations through the training set, called ‘epochs’. The

optimal number of epochs is chosen by looking at the accuracy in an independent dataset.

The pseudocode for this network can be found in the appendix. The R source code with

the full architecture of the convnet, datasets, and trained models can be found in the

supplementary material.

3 Monte Carlo results

To evaluate the power properties of the deep learning approach and compare them to

those of alternative hypothesis tests, I consider the models in the Monte Carlo simulation

of Kim (2009) that are shown in Table 1. Let {xt}Tt=1 denote a series of log returns. The

first models correspond to three alternative specifications of the null hypothesis that log

returns are MDS. Model 1 is a GARCH(1,1) model, Model 2 is a stochastic volatility

(SV) model, and Model 3 is an IGARCH(1,1) model. The remaining models specify two

alternative hypotheses. Model 4 is an AR(1) process, whereas Model 5 is an ARFIMA(0,

0.1, 0) or long memory process. The innovations εt are generated according to N(0, 1),

whereas ξt is generated according to N(0, 0.1) and is independent of εt. The processes ut

are used as innovations for models 4 and 5.

Model 1 xt = ut, ut =
√
htεt, ht = 0.5 + 0.75ht−1 + 0.1ε2t−1

Model 2 xt = ut, ut = exp(0.5ht)εt, ht = 0.95ht−1 + ξt

Model 3 xt = ut, ut =
√
htεt, ht = 0.5 + 0.90ht−1 + 0.1ε2t−1

Model 4 xt = 0.1xt−1 + ut

Model 5 (1−B)0.1xt = ut

Table 1: Models used in the Monte Carlo simulation.

For each scenario, I generated 50,000 MDS and 50,000 series with linear dependence.

Then, a convnet was trained to discriminate the two processes (for instance, GARCH(1,1)

against AR(1) with GARCH(1,1) innovations). Then, I generated an independent valida-

tion dataset containing two additional groups of 50,000 MDS and 50,00 linearly dependent

returns which were processed by the trained model. The scores given by the convnet for

the MDS in the validation data provide the null distribution. The scores for the linearly

dependent returns in the validation data yield the alternative distribution. Because the

MDS are coded as 0, and the alternative hypotheses are coded as 1, rejections are in the

right tail of the null distribution.

Figure 2 shows the class-conditional densities of the validation data scores given by

convolutional neural networks for return series of size T = 100, 500, 1000. The dark gray

distributions correspond to the null hypothesis of MDS with GARCH(1,1) innovations,
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Figure 2: Class-conditional densities of convnet scores for return series of size T =

100, 500, 1000. The dark gray distributions correspond to the null hypothesis of MDS

with GARCH(1,1) innovations, while the light gray distributions correspond to the alter-

native hypothesis of AR(1) with GARCH(1,1) innovations.

while the light gray distributions correspond to the alternative hypothesis of AR(1) with

GARCH(1,1) innovations. As the size of the time-series increases the discrimination

power of the network improves.

The empirical size of the convnets is the proportion of type I errors in the validation

data – the proportion of observations in the null distribution of the validation data with

score above the critical values Ŷ(k∗), where k∗ is given in Equation (11). Table 2 shows

the empirical size of the convnets for a nominal size α = 0.05 and for 3 different levels of

the tolerance level δ – the probability that the population type I error exceeds α. I do not

report the size properties of the AVR and AQ tests since they show no size distortions.

The lower the tolerance with respect to population type I errors, the lower is the empirical

size of the test. Still, for all scenarios the empirical size is close to the nominal level.

The empirical power of the convnets is the proportion of observations in the alternative

distribution for the validation data with score above the critical value. Using the Neyman-

Pearson classification framework, I calculated the critical values Ŷ(k∗) for α = 0.05 and

a tolerance level δ = 0.05. Table 3 reports the power properties of the convnet, the

automatic variance ratio test (AVR) of Kim (2009), and the automatic portmanteau test

(AQ) of Escanciano and Lobato (2009b), for return series of size T = 100, 500 and 1000,

and for a significance level of 5%. For the AVR and AQ tests the number of Monte Carlo

trials is set to 1000. The number of bootstrap iterations in the AVR test is set to 500.

For all scenarios under consideration, the convnets are more powerful than the AVR and
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AR(1) – GARCH AR(1) – SV AR(1) – IGARCH

T \ δ 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

100 4.68 4.77 4.86 4.76 4.81 4.85 4.68 4.76 4.81

500 4.74 4.82 4.87 4.77 4.84 4.87 4.68 4.77 4.82

1000 4.77 4.84 4.87 4.77 4.84 4.87 4.68 4.77 4.82

ARFIMA – GARCH ARFIMA – SV ARFIMA – IGARCH

T \ δ 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

100 4.76 4.83 4.85 4.72 4.83 4.87 4.68 4.77 4.82

500 4.77 4.84 4.87 4.77 4.84 4.88 4.68 4.77 4.82

1000 4.77 4.84 4.87 4.77 4.84 4.88 4.68 4.77 4.82

Table 2: Empirical size of the test (%) for a nominal size of 5% and different values of

the tolerance parameter δ.

AR(1) – GARCH AR(1) – SV AR(1) – IGARCH

T Convnet AVR AQ Convnet AVR AQ Convnet AVR AQ

100 21.8 18.7 17.3 22.3 19.2 14.1 20.9 19.6 15.6

500 60.5 55.9 53.6 67.3 52.0 54.6 65.7 55.1 55.7

1000 87.6 81.2 87.2 91.1 81.4 83.5 89.6 88.3 87.7

ARFIMA – GARCH ARFIMA – SV ARFIMA – IGARCH

T Convnet AVR AQ Convnet AVR AQ Convnet AVR AQ

100 33.8 25.9 21.1 33.6 25.1 18.8 33.0 26.4 18.0

500 84.1 66.2 64.2 83.8 68.5 64.0 84.2 72.5 64.1

1000 97.7 90.8 90.2 98.1 93.7 90.4 97.2 93.9 93.1

Table 3: Power properties of the convnet, and AVR and AQ tests for the alternative

processes. The level of significance is 5%.

AQ tests.

4 Empirical application

To test the martingale difference hypothesis in real data, we must define two stochastic

processes that the convnet will learn to discriminate. The first process, corresponding to

the null hypothesis, is that the returns are martingale difference sequences with condi-

tional heteroskedasticity,

H0 : xt =
√

htεt, ht = α0 + α1ε
2
t−1, εt ∼ N(0, 1). (12)

The second process corresponds to the alternative hypothesis

H1 : xt = ϕxt−1 +
√
htεt, ht = α0 + α1ε

2
t−1, εt ∼ N(0, 1). (13)
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To obtain a rich variety of stochastic processes, the autoregressive parameter for x is

generated according to ϕ ∼ U(0.01, 0.15), and the heteroskedasticity parameters are

generated according to α0 ∼ U(0, 0.001) and α1 ∼ U(0.85, 0.99), where U is the uniform

distribution.

First, I trained a convnet using 50,000 temporal sequences generated according to

H0, and 50,000 generated according to H1. The length of the generated return series

is equal to the length of the real return series for which I want to test the martingale

difference hypothesis. Again, the null model is encoded as 0 and the alternative model

is encoded as 1, and therefore the rejections are in the right tail of the null distribution.

After training the convnet, I generated an independent test set comprising 100,000 return

series according to the null hypothesis (H0). This test set yields a set of scores generated

by the trained model: Ŷ1, . . . , Ŷn. Using this distribution of scores, we can calculate the

critical value for a given significance level α as Ŷ α
k∗ , where k∗ is determined by Equation

11. If a real return series obtains a score of Ŷn+1, we reject H0 at level α if Ŷn+1 > Ŷ α
k∗ .

It is important to note that the real data are not used in training the model nor in the

generation of the null distribution. The first time the model ‘sees’ a real return series is

when it computes its score.

As an empirical application, I consider two sets of exchange rates. The martingale

difference hypothesis in exchange rate returns was studied by many authors, and the

evidence against it is not conclusive (Escanciano and Lobato, 2009a). The first empirical

application uses the data of Wright (2001). It consists of weekly nominal exchange rates

for the Canadian dollar, French franc, German mark, Japanese yen, and British pound

against the US dollar, covering the period from August 7, 1974, to May 29, 1996. The

returns are given by the first difference of the log-exchange rates. Table 4 shows the

convnet scores for the Wright (2001) exchange rates. The critical values for rejection

at 10%, 5% and 1% significance levels are 0.617, 0.768, and 0.955, respectively. The

rightmost columns report the p-values for the AVR and AQ tests. The convnet and the

AVR test reject the martingale difference hypothesis for all exchange rates but the British

pound at 10% significance level. The AQ test fails to reject the martingale difference

hypothesis for the British pound and the French franc.

In a second empirical illustration, I use the noon buying rates in New York of 23

currencies against the US dollar published by the Federal Reserve.2 The data cover the

period from January 1, 2000, to December 31, 2020, with a total of 5479 observations.

To obtain weekly data I considered the rates published on Wednesdays. If on a given

Wednesday the market was closed, the rate on the following trading day was used. To

obtain monthly data I used the last available rate on each month. The sample sizes are

2https://www.federalreserve.org/Release/h10/hist
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Currency Convnet AVR test AQ test

scores p-values p-values

Canadian dollar 0.982∗∗∗ 0.016 0.040

German mark 0.801∗∗ 0.040 0.098

French franc 0.694∗ 0.096 0.177

British pound 0.386 0.360 0.435

Japanese yen 0.914∗∗ 0.010 0.000

Table 4: Convnet scores for the Wright (2001) exchange rates. The critical values for

rejection at 10%, 5% and 1% significance levels are 0.617, 0.768, and 0.955, respectively.

*, ** and *** indicate rejection of the null at 10%, 5% and 1% levels, respectively. The

rightmost columns show the p-values for the AVR and AQ tests.

1096 and 252 for weekly and monthly data, respectively.

Table 5 reports the convnet scores for the weekly and monthly returns of the Federal

Reserve of New York exchange rates. For weekly returns, the critical values for rejection

at 10%, 5% and 1% significance levels are 0.567, 0.728, 0.937, respectively. For monthly

returns, the critical values for rejection at 10%, 5% and 1% significance levels are 0.662,

0.746, and 0.871, respectively. The p-values for the AVR and AQ tests are also shown.

Considering a 10% significance level, the three approaches reject the martingale difference

hypothesis for weekly and monthly returns of the Chinese yuan and the Taiwanese dollar,

and for weekly returns of the Malaysian ringgit. The convnet and the AVR test further

reject this hypothesis for monthly returns of the Sri Lankan rupee. Furthermore, the

convnet and AVR test rejects it for weekly returns of the Singapore dollar, whereas the

AQ test fails the rejection at 10% level. The convnet detects potential deviations from

the martingale difference hypothesis that the statistical tests fail to capture. The convnet

rejects this hypothesis for weekly returns of the Thai baht and Venezuelan bolivar at 5%

level. It is surprising that the statistical tests fail to detect violations of the martingale

difference hypothesis in the bolivar given the hyperinflation in Venezuela in recent years.

There are indications that this hypothesis may be violated at a 10% significance level for

monthly returns of the Danish krone, Swedish krona, and Indian rupee. However, the

observed scores for these currencies are very close to the 10% critical value.

5 Conclusions

In this paper, I analyzed the properties of a deep learning approach based on convnets

for testing if asset returns follow martingale difference sequences. The Neyman-Pearson

classification paradigm was used as a tool to control the type I error of the test. In
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Currency Weekly data Monthly data

Convnet AVR test AQ test Convnet AVR test AQ test

scores p-values p-values scores p-values p-values

Australian dollar 0.283 0.866 0.985 0.496 0.402 0.378

Brazilian real 0.415 0.354 0.328 0.524 0.564 0.707

British pound 0.121 0.766 0.632 0.503 0.504 0.521

Canadian dollar 0.195 0.922 0.748 0.325 0.558 0.485

Chinese yuan 0.982∗∗∗ 0.022 0.096 0.991∗∗∗ 0.000 0.000

Danish krone 0.336 1.000 0.963 0.711∗ 0.584 0.635

Euro 0.495 0.984 0.948 0.587 0.588 0.633

Hong Kong dollar 0.246 0.512 0.671 0.485 0.926 0.791

Indian rupee 0.586∗ 0.226 0.300 0.703∗ 0.196 0.182

Japanese yen 0.141 0.708 0.750 0.670∗ 0.840 0.738

Malaysian ringgit 0.978∗∗∗ 0.044 0.050 0.765∗∗ 0.640 0.624

Mexican peso 0.219 0.972 0.984 0.668∗ 0.330 0.332

New Zealand dollar 0.094 0.302 0.442 0.394 0.976 0.916

Norwegian krone 0.167 0.596 0.588 0.608 0.478 0.444

Singapore dollar 0.713∗ 0.066 0.105 0.703∗ 0.960 0.786

South African rand 0.280 0.500 0.532 0.466 0.866 0.915

South Korean won 0.296 0.286 0.403 0.371 0.506 0.666

Sri Lankan rupee 0.292 0.916 0.834 0.793∗∗ 0.100 0.424

Swedish krona 0.179 0.766 0.746 0.671∗ 0.380 0.358

Swiss franc 0.628∗ 0.998 0.977 0.325 0.194 0.275

Taiwan dollar 0.979∗∗∗ 0.012 0.015 0.895∗∗∗ 0.032 0.025

Thai baht 0.948∗∗∗ 0.190 0.284 0.813∗∗ 0.480 0.516

Venezuelan bolivar 0.778∗∗ 0.622 0.957 0.660 0.656 0.535

Table 5: Convnet scores for weekly and monthly returns of the Federal Reserve of New

York exchange rates. For weekly returns, the critical values for rejection at 10%, 5%

and 1% significance levels are 0.567, 0.728, 0.937, respectively. For monthly returns, the

critical values for rejection at 10%, 5% and 1% significance levels are 0.662, 0.746, and

0.871, respectively. *, ** and *** indicate rejection of the null at 10%, 5% and 1% levels,

respectively. The rightmost columns show the p-values for the AVR and AQ tests.

Monte Carlo simulations, I found that this approach has better power properties than

automatic variance ratio and portmanteau tests against several alternative processes. I

also presented an empirical application to a large set of exchange rates. I showed that

this approach can detect potential deviations from the martingale difference hypothesis

that the alternative tests failed to capture. Because these models are highly efficient in
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perceptual problems, they are a valuable tool to learn patterns in financial returns that

are not captured by conventional statistical tests.

Appendix

The pseudocode below shows the algorithm for testing the martingale difference hypoth-

esis with a convolutional neural network. The R source code implementing this network

can be found in the supplementary material. In this repository the reader can also find

the R source code for the simulation and empirical results, the datasets used in the study,

and the trained models in h5 format. Several combinations of hyper-parameters (param-

eters that are not learned in the training process) were evaluated using grid-search and

5-fold cross validation. The following hyper-parameters values were considered: number

of feature maps ∈ {8, 16, 32, 64}; max pooling size ∈ {2, 4}; number of units in dense

layer ∈ {4, 8, 16, 32}.

INPUTS: Time series of log-returns, x; number of Monte Carlo trials, N ; significance level α;

tolerance level, δ

OUTPUT: decision on null hypothesis that x is MDS

FUNCTION: convnet(data)

CREATE sequential model

ADD 1D convolutional layer with 32 filters, kernel size of 12, and ReLU activation function

ADD 1D max pooling layer with pool size of 4

ADD flatten layer

ADD dense layer with 16 units and ReLU activation function

ADD dropout layer with rate of 0.25

ADD a dense layer with 1 unit and sigmoid activation function

TRAIN with data, binary cross-entropy loss, Adam optimizer with learning rate of 1E-5

END FUNCTION

T ← size of x

X0 ← N vectors with MDS of size T

X1 ← N vectors with autoregressive series of size T

Y0 ← vector of 0’s of size N

Y1 ← vector of 1’s of size N

CALL convnet({X0, Y0}; {X1, Y1})

Xvalidation ← N vectors with MDS of size T

scores ← PREDICT using convnet on Xvalidation

scorex ← PREDICT using convnet on x

FOR k = 1 TO N
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ν(k)←
∑N

j=k

(
N
j

)
(1− α)jαN−j

END FOR

k∗ ← min {k ∈ {1, . . . , N} : ν(k) ≤ δ}
sorted scores← sort(scores)

critical value← sorted scores[k∗].

IF scorex > critical value THEN

OUTPUT “Reject the null that x is MDS”

ELSE

OUTPUT “Do not reject the null that x is MDS”

END IF
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